Nicole Riemer

Professor
Associate Head

Biography

My group develops computer simulations that describe how aerosol particles are created, transported, and transformed in the atmosphere. We use these simulations, together with observational and satellite data, to understand how aerosol particles impact human health, weather, and climate. This understanding guides us in developing effective pollution mitigation strategies and responses to global climate change.

Aerosol particles are microscopic particles suspended in the atmosphere. Some of them, for example dust, sea salt, or pollen, come from natural sources. Others are man-made, such as soot particles from diesel engines, or sulfate particles from coal-fired power plants. In a typical urban environment we inhale about 5 million particles with each breath, all of which vary greatly in size and chemical composition.

Aerosol particles impact our lives in many ways. Since they are so small, they can penetrate deep into our lungs and our bloodstream, causing respiratory and cardiac diseases. Aerosol particles have also dramatic impacts on weather and climate. For example, they block and absorb sunlight, changing the heating of the Earth, and they act as the seeds that produce water droplets in clouds.

I am always looking for new graduate students to join my group. Please contact me for questions about potential projects or about the application process at our department.

Additional Campus Affiliations

Professor, National Center for Supercomputing Applications (NCSA)

Recent Publications

DeVille, L. X., Riemer, N., & West, M. (2019). Convergence of a generalized weighted flow algorithm for stochastic particle coagulation. Journal of Computational Dynamics, 6(1), 69-94. https://doi.org/10.3934/jcd.2019003

Malfatti, F., Lee, C., Tinta, T., Pendergraft, M. A., Celussi, M., Zhou, Y., ... Prather, K. A. (2019). Detection of Active Microbial Enzymes in Nascent Sea Spray Aerosol: Implications for Atmospheric Chemistry and Climate. Environmental Science and Technology Letters, 6(3), 171-177. https://doi.org/10.1021/acs.estlett.8b00699

Riemer, N., Ault, A. P., West, M., Craig, R. L., & Curtis, J. H. (2019). Aerosol Mixing State: Measurements, Modeling, and Impacts. Reviews of Geophysics, 57(2), 187-249. https://doi.org/10.1029/2018RG000615

Shou, C., Riemer, N., Onasch, T. B., Sedlacek, A. J., Lambe, A. T., Lewis, E. R., ... West, M. (2019). Mixing state evolution of agglomerating particles in an aerosol chamber: Comparison of measurements and particle-resolved simulations. Aerosol Science and Technology, 53(11), 1229-1243. https://doi.org/10.1080/02786826.2019.1661959

Ching, J., West, M., & Riemer, N. (2018). Quantifying impacts of aerosol mixing state on nucleation-scavenging of black carbon aerosol particles. Atmosphere, 9(1), [17]. https://doi.org/10.3390/atmos9010017

View all publications on Illinois Experts