Skip to main content

Nicole Riemer

Professor

Biography

My group develops computer simulations that describe how aerosol particles are created, transported, and transformed in the atmosphere. We use these simulations, together with observational and satellite data, to understand how aerosol particles impact human health, weather, and climate. This understanding guides us in developing effective pollution mitigation strategies and responses to global climate change.

Aerosol particles are microscopic particles suspended in the atmosphere. Some of them, for example dust, sea salt, or pollen, come from natural sources. Others are man-made, such as soot particles from diesel engines, or sulfate particles from coal-fired power plants. In a typical urban environment we inhale about 5 million particles with each breath, all of which vary greatly in size and chemical composition.

Aerosol particles impact our lives in many ways. Since they are so small, they can penetrate deep into our lungs and our bloodstream, causing respiratory and cardiac diseases. Aerosol particles have also dramatic impacts on weather and climate. For example, they block and absorb sunlight, changing the heating of the Earth, and they act as the seeds that produce water droplets in clouds.

I am always looking for new graduate students to join my group. Please contact me for questions about potential projects or about the application process at our department.

Additional Campus Affiliations

Professor, Climate, Meteorology and Atmospheric Sciences
Professor, Civil and Environmental Engineering
Professor, National Center for Supercomputing Applications (NCSA)

Recent Publications

D'Aquino, Z., Arabas, S., Curtis, J. H., Vaishnav, A., Riemer, N., & West, M. (2024). PyPartMC: A Pythonic interface to a particle-resolved, Monte Carlo aerosol simulation framework. SoftwareX, 25, Article 101613. https://doi.org/10.1016/j.softx.2023.101613

Shen, W., Wang, M., Riemer, N., Zheng, Z., Liu, Y., & Dong, X. (2024). Improving BC Mixing State and CCN Activity Representation With Machine Learning in the Community Atmosphere Model Version 6 (CAM6). Journal of Advances in Modeling Earth Systems, 16(1), Article e2023MS003889. https://doi.org/10.1029/2023MS003889

Ghosh, S., Dey, S., Das, S., Riemer, N., Giuliani, G., Ganguly, D., Venkataraman, C., Giorgi, F., Tripathi, S. N., Ramachandran, S., Rajesh, T. A., Gadhavi, H., & Srivastava, A. K. (2023). Towards an improved representation of carbonaceous aerosols over the Indian monsoon region in a regional climate model: RegCM. Geoscientific Model Development, 16(1), 1-15. https://doi.org/10.5194/gmd-16-1-2023

Hodzic, A., Mahowald, N., Dawson, M., Johnson, J., Bernardet, L., Bosler, P. A., Fast, J. D., Fierce, L., Liu, X., Ma, P. L., Murphy, B., Riemer, N., & Schulz, M. (2023). Generalized Aerosol/Chemistry Interface (GIANT). Bulletin of the American Meteorological Society, 104(11), E2065-E2080. https://doi.org/10.1175/BAMS-D-23-0013.1

Knopf, D. A., Silber, I., Riemer, N., Fridlind, A. M., & Ackerman, A. S. (2023). A 1D Model for Nucleation of Ice From Aerosol Particles: An Application to a Mixed-Phase Arctic Stratus Cloud Layer. Journal of Advances in Modeling Earth Systems, 15(10), Article e2023MS003663. https://doi.org/10.1029/2023MS003663

View all publications on Illinois Experts