

Plan for Today

ATMS 502 CSE 566

Tuesday,
2 April 2019
Class \#21

Program \#5 is due
Tuesday, April 16

- Nonlinear instability and aliasing
- Quasi-compressible system
- 2) Semi-Lagrangian methods
- Advantages, questions, choices
-3) Program 5
- 2-D quasi-compressible nonlinear flow

Semi-Lagrangian methods

Semi-Lagrangian Methods

Ritchie et al. 1995

- "The main motivation for using a semi-Lagrangian formulation is to permit the use of time steps that far exceed the CFL stability criterion for the corresponding Eulerian model ... provided that the additional time truncation error does not significantly decrease the accuracy"
- Their case: 4 x improvement in efficiency

Semi-Lagrangian Methods

- Generally:
- Eulerian view - evolution at a point
- Lagrangian view - following fluid motion
- Semi-Lagrangian viewpoint ...
- Semi-Lagrangian methods: find source of tracer arriving at fixed grid locations

$$
\frac{d F}{d t}=\frac{\partial F}{\partial t}+\frac{d x}{d t} \frac{\partial F}{\partial x}=0 \quad \frac{d x}{d t}=U(x, t)
$$

Semi-Lagrangian Properties-1

- Maximum Δt not limited by maximum wind speed
- Can stably integrate with Courant numbers > 1
- Can handle sharp gradients / discontinuities well
- But ... does not have conservation properties like finite volume methods
- Can be somewhat more expensive per time step

Semi-Lagrangian Properties-2

- Low dispersion
- Generally accurate but there is damping due to interpolation, though it is scale-selective.
- Important to limit truncation errors in

1. discretized governing equations and
2. in trajectory computations

Semi-Lagrangian Methods

- Linear advection example
- 3 revolutions, courant number 0.25

Lax-Wend $n=840$ max $=. ~ 52$ tot error .034

Lax-Wendroff

Semi-Lagrangian Methods

- Different case... with Courant \# 1.2

Semi-Lagrangian Methods

Fig. 2. Schematic for two-time-level advection. Actual (solid curve) and approximated (dashed line) trajectories that arrive at mesh point x_{m} at time $t_{n}+\Delta t$. Here α_{m} is the distance the particle is displaced in x in time Δt.

Semi-Lagrangian Methods

- Interpolation matters.

Semi-Lagrangian Methods

(12)

- Staniforth and Cote, 1991, Mon. Wea. Rev.

Program \#5

2D NONLINEAR, COMPRESSIBLE FLOW

Program 5: Overview

- We are modeling nonlinear compressible flow.
- nonlinear: time-evolving flow fields
- compressible: well, quasi-compressible.
x there are sound waves
${ }^{2}$ we will set the sound wave speed $\mathrm{C}_{\mathrm{s}}\left(300 \mathrm{~m} \mathrm{~s}^{-1}=\right.$ full speed $)$
* the only explicit density in our equations is a function of z , only.

Program 5: Overview

- We are modeling nonlinear compressible flow.
- nonlinear: time-evolving flow fields
- compressible: well, quasi-compressible.
x there are sound waves
${ }^{2}$ we will set the sound wave speed $\mathrm{C}_{\mathrm{s}}\left(300 \mathrm{~m} \mathrm{~s}^{-1}=\right.$ full speed $)$
x the only explicit density in our equations is a function of z , only.
- Everything starts with temperature (θ)
- we specify up to two temperature perturbations.
- perturbation (potential) temperature $=\theta-\bar{\theta}$
) with $\bar{\theta}=300$ (a constant). When plotting θ, always plot $\theta-\bar{\theta}$.
- Change $\theta>\mathrm{P}$ changes $>\mathrm{U}$ and W respond.
- Initial conditions: Specify initial θ; initial $\mathrm{U}, \mathrm{W}, \mathrm{P}^{\prime}=$ zero.

Program 5: Structure, BCs, base state

- General program structure
- input
- time loop
x start array update: $u 3=u 1$, etc.
* call BC routine
» call main physics subroutines
- advection
- diffusion
- pgf
\% array update
- on to the next step
- Boundary conditions
- Symmetric
- Periodic
- Zero-gradient
- "Slip"
"Base state"
- Only base state variable you use: density (1-D)
- Pressure - perturbation?
- $\theta /$ temperature perturbation?

Program 5: Organization

- We'll group functions by physical process

Each physical process: One subroutine

- (1): advection routine will
\% handle θ advection via calls to your advect1d routine, as before
r advection will also handle advection of U, W.
- (2): diffusion routine will
* carry out all diffusive terms, involving $\theta, \mathrm{U}, \mathrm{W}$
(3): PGF routine handles all terms involving pressure
* PGF = pressure gradient force
* This routine will do the final contributions to U, W

These new ($\mathrm{u} 3, \mathrm{w} 3$) terms are used to find the new P^{\prime}, p3.

Program 5: 2D continuous equations

- Full program 5 equations
- all v terms and y-derivatives are ignored.

u-momentum:	$u_{t}=-u u_{x}$	$-w u_{z}-\frac{1}{\bar{\rho}} p_{x}^{\prime}+K\left(u_{x x} \square+u_{z z}\right)$	
v-momentum: (program 6 only)			
w-momentum: $\left(\theta^{\prime}=\theta-\bar{\theta}\right)$	$w_{t}=-u w_{x} \square-w w_{z}-\frac{1}{\bar{\rho}} p_{z}^{\prime}+g \frac{\theta^{\prime}}{\bar{\theta}}+K\left(w_{x x} \square+w_{z z}\right)$		
Perturbation pressure:	$p_{t}^{\prime}=-c_{s}^{2}\left(\bar{\rho} \frac{\partial u}{\partial x} \square+\frac{\partial}{\partial z}(\bar{\rho} w)\right)$		
θ (pot.temperature):	$\theta_{t}=-(u \theta)_{x} \square-(w \theta)_{z}+\theta\left(u_{x} \square+w_{z}\right)+K\left(\theta_{x x}\right.$		$\left.+\theta_{z z}^{\prime}\right)$

Processes: Advection

- Full program 5 equations Advection highlighted.

Tests "B" and "C" are only for θ advection.

u-momentum:	$u_{t}=-u u_{x}$	$-w u_{z}-\frac{1}{\bar{\rho}} p_{x}^{\prime}+K\left(u_{x x} \square+u_{z z}\right)$		
v-momentum: (program 6 only)				
w-momentum: $\left(\theta^{\prime}=\theta-\bar{\theta}\right)$	$w_{t}=-u w_{x} \square-w w_{z} \cdot \frac{1}{\bar{\rho}} p_{z}^{\prime}+g \frac{\theta^{\prime}}{\bar{\theta}}+K\left(w_{x x} \square+w_{z z}\right)$			
Perturbation pressure:	$p_{t}^{\prime}=-c_{s}^{2}\left(\bar{\rho} \frac{\partial u}{\partial x} \square+\frac{\partial}{\partial z}(\bar{\rho} w)\right)$			
θ (pot. temperature):	$\theta_{t}=-(u \theta)_{x} \square-(w \theta)_{z}+\theta\left(u_{x} \square+w_{z}\right)+K\left(\theta_{x x}\right.$			$\left.+\theta_{z z}^{\prime}\right)$

"advection" routine now includes u, w (nonlinear)

Processes: Diffusion

- Full program 5 equations

Diffusion highlighted.

u-momentum:	$u_{t}=-u u_{x} \square \square-w u_{z}-\frac{1}{\bar{\rho}} p_{x}^{\prime}+K\left(u_{x x} \square+u_{z z}\right)$
v-momentum: (program 6 only)	\square
w-momentum: $\left(\theta^{\prime}=\theta-\bar{\theta}\right)$	$w_{t}=-u w_{x} \square \square-w w_{z}-\frac{1}{\bar{\rho}} p_{z}^{\prime}+g \frac{\theta^{\prime}}{\bar{\theta}}+K\left(w_{x x} \square+w_{z z}\right)$
Perturbation pressure:	$p_{t}^{\prime}=-c_{s}^{2}\left(\bar{\rho} \frac{\partial u}{\partial x} \square+\frac{\partial}{\partial z}(\bar{\rho} w)\right)$
θ (pot. temperature):	$\theta_{t}=-(u \theta)_{x} \square \quad-(w \theta)_{z}+\theta\left(u_{x} \square+w_{z}\right)+K\left(\theta_{x x} \square+\theta_{z z}^{\prime}\right)$

"diffusion" evaluates derivatives at ($n-1$) for u \& w ; (n) for θ

Processes: PGF+buoyancy

- Full program 5 equations
pressure gradient \& buoyancy highlighted.

This is
 test "A"

u-momentum:	$u_{t}=-u u_{x} \square-w u-\frac{1}{\bar{\rho}} p_{x}^{\prime}+K\left(u_{x x} \square+u_{z z}\right)$
v-momentum: (program 6 only)	\square
w-momentum: $\left(\theta^{\prime}=\theta-\bar{\theta}\right)$	$w_{t}=-u w_{x} \square-w w_{2}-\frac{1}{\bar{\rho}} p_{z}^{\prime}+g \frac{\theta^{\prime}}{\bar{\theta}}+K\left(w_{x x} \square+w_{z z}\right)$
Perturbation pressure:	$p_{t}^{\prime}=-c_{s}^{2}\left(\bar{\rho} \frac{\partial u}{\partial x} \square+\frac{\partial}{\partial z}(\bar{\rho} w)\right)$
θ (pot.temperature):	$\theta_{t}=-(u \theta)_{x} \square-(w \theta)_{z}+\theta\left(u_{x} \square+w_{z}\right)+K\left(\theta_{x x}^{\square} \square+\theta_{z z}^{\prime}\right)$

$$
\mathrm{u} 3=\mathrm{u} 3+\ldots ; \mathrm{w} 3=\mathrm{w} 3+\ldots ; \operatorname{set} u, w B C s ; \mathrm{p} 3=\mathrm{p} 1+\ldots
$$

Program 5: Structure

Program 5: test case "A"

- in this test we only use processes in "PGF"
- other routines are not called
- θ does not change from the IC values.

Program 5: Dimensions

- Array dimensions
- Theta (θ) is treated as before, except ...
${ }^{r}$ we have added a dissipation term
- Your 2-D arrays : NX $=$ NZ !!!
- You have additional 2-D arrays now that we are nonlinear:
r arrays for U, W are now time-evolving and need ghost zones!
${ }^{2}$ new array: P (for perturbation pressure. needs ghost zones too)
- New 1-D arrays
. for density at theta/u/p levels (altitudes)
r for density at w-levels (in-between those for theta/u/p)
o this density is not time-varying. Set it only once...
) other arrays are used as part of initialization
- and are never needed again.

Program 5: BCs

- Boundary conditions (B.C.'s)
- Z: B.C.'s as before
* zero-gradient
(w: zero @ top, bottom)
X: BC
symmetric B.C.'s
- for W, P, θ
* asymmetric in X - only for U

Program 5: Time integration

- Inside main program
- Before integration loop:
* $\mathrm{tstep}=\Delta \mathrm{t}$
- Main integration loop, near top:
) $\mathrm{t} 2=\mathrm{t} 1$
* $\mathrm{u}_{3}=\mathrm{u} 1$
* w3 = w1
call subroutines advection, diffusion, pgf
- Inside subroutines advection, diffusion, pgf
${ }^{r} t 2=t 2+\Delta t \cdot$ [forcing terms]
${ }^{x} u_{3}=u 3+$ tstep \cdot [forcing terms]
* $w 3=w 3+$ tstep $\cdot[$ forcing terms]

Program 5: Update

- Inside main program

- Update step, bottom of integration loop
* if (this was the first time step)
otherwise (time step 2 onwards)

$$
\begin{array}{ll}
\mathrm{u} 1=\mathrm{u} 2 ; \mathrm{u} 2=\mathrm{u} 3 & \text { copy } n>n-1, \text { and } n+1>n \\
\mathrm{w} 1=\mathrm{w} 2 ; \mathrm{w} 2=\mathrm{w} 3 & \text { copy } n>n-1, \text { and } n+1>n \\
\mathrm{p} 1=\mathrm{p} 2 ; \mathrm{p} 2=\mathrm{p} 3 & \text { copy } n>n-1, \text { and } n+1>n \\
\mathrm{t} 1=\mathrm{t} 2 & \\
\text { theta is forward time, always. }
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{u} 2=\mathrm{u} 3 & \text { copy } n+1 \text { data over (replacing) " } n " \text { array } \\
\mathrm{w} 2=\mathrm{w} 3 & \text { copy } n+1 \text { data over (replacing) " } n " \text { array } \\
\mathrm{p} 2=\mathrm{p} 3 & \text { copy } n+1 \text { data over (replacing) " } n " \text { array } \\
\mathrm{t} 1=\mathrm{t} 2 & \text { copy } n+1 \text { data over (replacing) " } n " \text { array } \\
\mathrm{tstep}=\mathbf{2} \cdot \Delta \mathrm{t} & \text { from now on, take } 2 \Delta t \text { steps. }
\end{array}
$$

Review: Program 5 coding

- Changes and additions for:
- initial condition routine
. no spatial variation specified for wind (or pressure)
* multiple perturbations for theta
- boundary condition routine
two dimensions: edges
- main time step loop: starting
* beginning the leapfrog time step; preparing theta
- main time step loop: finishing
${ }^{*}$ switching from forward to leapfrog time
- routines
advection, diffusion, and pgf (pressure-gradient-force/buoyancy)

Program 5: Questions

- Ghost points - when? where?
- To simplify things for myself I dimensioned almost everything $0: n x+1,0: n y+1$, i.e. one ghost point.
- But what is really needed? discuss $1-D, 2-D$
- Official case not yet ready
- yes.
- "nx" and "nz" refer to - what variable?
- theta (potential temperature) and p (perturbation pressure).
- Grid points or cells?
yes. Consider as points except in context of Piecewise Linear method
- What limits of arrays? discuss
- Diffusion: X, Z, both, how? discuss
- Strang splitting - not yet

Program 5: Coding practice

(3)

- Starting a time step
- Before doing anything else:
) $\mathrm{t} 2=\mathrm{t} 1$
) $\mathrm{u} 3=\mathrm{u} 1$
) $\mathrm{w} 3=\mathrm{w} 1$

This also lets us turn processes on or off - we have taken the 'first part' of each time step before starting.

* All later routines add to these " $\mathrm{n}+1$ " arrays.
- So in advection, diffusion, PGF, you will code ...
» $t 2=t 2+\ldots \Delta t \cdot[$ forcing terms]
${ }^{*} u_{3}=u 3+\ldots 2 \Delta t \cdot[$ forcing terms] (same for W)
- Exception: pressure
* Only one step to pressure: $p 3=p 1+2 \Delta t \cdot[$ forcing terms]

Program 5: First time step

- Straightforward coding would look like ...
- Forward step:
u2 $=\mathrm{u} 1+\Delta \mathrm{t} \cdot$ [forcing terms]
- Centered step:
${ }^{2} \mathrm{u} 3=\mathrm{u} 1+2 \Delta \mathrm{t} \cdot[$ forcing terms]
- Writing all that code out twice is annoying.
- Instead, we will do ...
- For the first time step, tstep $=\Delta t$; otherwise, tstep $=2 \Delta t$
- And so our equations look like ...
${ }^{*} \mathrm{u} 3=\mathrm{u} 1+\mathrm{tstep} \cdot[$ forcing terms] (same for W, P)
* works because we also initialize our arrays u1=u2=0 (same for W, P)
- Except for the temperature: θ is always forward in time.

Program 5: Where do I start?

- Suggested order of development for Program 5
- Modify program 2 or 3 code to everywhere to assume NX \neq NZ
- Change physical dimensions; domain no longer [-0.5:+0.5]
- Create initial θ field, plot $\theta-\bar{\theta}$; verify it looks OK.
\approx So the initial θ plot will look like a circular field surround by zeroes
- Set up all arrays:
. u, w, p: three time levels, 2-D
\% t: two time levels, 2-D
x density (for $\mathrm{p} / \mathrm{t} / \mathrm{u}$ levels) and density for w -levels: 1-D
- Create initial 1-D base-state fields for density
- Create routine for boundary conditions
- Test in this order: PGF; linear θ advection $\theta ; \theta$ diffusion.
- Now: full physics.

