
Atms 502, CSE 566

Tue., Apr. 2, 2019

4/2/19

Numerical
Fluid
Dynamics

Images:

Mariano Cantero –
Civil & Environmental
Engineering, U. Illinois

ATMS 502 - Spring 2019 1

ATMS 502
CSE 566

Tuesday,
2 April 2019

Class #21

Program #5 is due
Tuesday, April 16

Plan for Today

� 1) Review
¡ Nonlinear instability and aliasing
¡ Quasi-compressible system

� 2) Semi-Lagrangian methods
¡ Advantages, questions, choices

� 3) Program 5
¡ 2-D quasi-compressible nonlinear flow

2

4/2/19ATMS 502 - Spring 2019

Semi-Lagrangian methods

4/2/19ATMS 502 - Spring 2019

3

Semi-Lagrangian Methods
4

Ritchie et al. 1995
� “The main motivation for using a semi-Lagrangian

formulation is to permit the use of time steps that
far exceed the CFL stability criterion for the
corresponding Eulerian model … provided that the
additional time truncation error does not
significantly decrease the accuracy”

� Their case: 4x improvement in efficiency

4/2/19ATMS 502 - Spring 2019

Semi-Lagrangian Methods

� Generally:
¡ Eulerian view - evolution at a point
¡ Lagrangian view - following fluid motion
¡ Semi-Lagrangian viewpoint …

� Semi-Lagrangian methods: find source of tracer
arriving at fixed grid locations

5

4/2/19ATMS 502 - Spring 2019

Semi-Lagrangian Properties-1

4/2/19ATMS 502 - Spring 2019

6

� Maximum ∆t not limited by maximum wind speed

� Can stably integrate with Courant numbers > 1

� Can handle sharp gradients / discontinuities well

� But … does not have conservation properties like
finite volume methods

� Can be somewhat more expensive per time step

Semi-Lagrangian Properties-2

4/2/19ATMS 502 - Spring 2019

7

� Low dispersion

� Generally accurate but there is damping due to
interpolation, though it is scale-selective.

� Important to limit truncation errors in
1. discretized governing equations and

2. in trajectory computations

Semi-Lagrangian Methods

� Linear advection example
� 3 revolutions, courant number 0.25

8

4/2/19ATMS 502 - Spring 2019

Semi-Lagrangian Methods

4/2/19ATMS 502 - Spring 2019

� Different case… with Courant # 1.2

9

Semi-Lagrangian Methods
S

ta
n

if
o
r
th

 a
n

d
 C

o
te

4/2/19ATMS 502 - Spring 2019

10

Semi-Lagrangian Methods

� Interpolation matters.

11

4/2/19ATMS 502 - Spring 2019

Semi-Lagrangian Methods

� Staniforth and Cote, 1991, Mon. Wea. Rev.

“Slotted” cylinder
6 revolutions

12

4/2/19ATMS 502 - Spring 2019

2D N O N L I N E A R , C O M P R E S S I B L E F L O W

ATMS 502 - Spring 2019 4/2/19

13

Program #5

Program 5: Overview

4/2/19ATMS 502 - Spring 2019

14

� We are modeling nonlinear compressible flow.
¡ nonlinear: time-evolving flow fields
¡ compressible: well, quasi-compressible.

÷ there are sound waves
÷ we will set the sound wave speed Cs (300 m s-1 = full speed)
÷ the only explicit density in our equations is a function of z, only.

Program 5: Overview

4/2/19ATMS 502 - Spring 2019

15

� We are modeling nonlinear compressible flow.
¡ nonlinear: time-evolving flow fields
¡ compressible: well, quasi-compressible.

÷ there are sound waves
÷ we will set the sound wave speed Cs (300 m s-1 = full speed)
÷ the only explicit density in our equations is a function of z, only.

� Everything starts with temperature (q)
¡ we specify up to two temperature perturbations.
¡ perturbation (potential) temperature =

÷ with (a constant). When plotting q, always plot .
¡ Change q > P changes > U and W respond.
¡ Initial conditions: Specify initial q; initial U,W,P’ = zero.

θ −θ

θ = 300 θ −θ

Program 5: Structure, BCs, base state

4/2/19ATMS 502 - Spring 2019

16

� General program structure
¡ input
¡ time loop

÷ start array update: u3=u1, etc.
÷ call BC routine
÷ call main physics subroutines

¢ advection
¢ diffusion
¢ pgf

÷ array update
¡ on to the next step

� Boundary conditions
¡ Symmetric
¡ Periodic
¡ Zero-gradient
¡ “Slip”

� “Base state”
¡ Only base state variable

you use: density (1-D)
¡ Pressure – perturbation?
¡ q/temperature –

perturbation?

Program 5: Organization

4/2/19ATMS 502 - Spring 2019

17

� We’ll group functions by physical process
÷ Each physical process: One subroutine

¡ (1): advection routine will
÷ handle q advection via calls to your advect1d routine, as before
÷ advection will also handle advection of U, W.

¡ (2): diffusion routine will
÷ carry out all diffusive terms, involving q, U, W

¡ (3): PGF routine handles all terms involving pressure
÷ PGF = pressure gradient force
÷ This routine will do the final contributions to U, W
÷ These new (u3, w3) terms are used to find the new P’, p3.

Program 5: 2D continuous equations

4/2/19ATMS 502 - Spring 2019

18

� Full program 5 equations
¡ all v terms and y-derivatives are ignored.

Processes: Advection

4/2/19ATMS 502 - Spring 2019

19

� Full program 5 equations
¡ Advection highlighted.

“advection” routine now includes u, w (nonlinear)

Tests “B” and “C” are
only for q advection.

Processes: Diffusion

4/2/19ATMS 502 - Spring 2019

20

� Full program 5 equations
¡ Diffusion highlighted.

“diffusion” evaluates derivatives at (n-1) for u & w; (n) for q

Processes: PGF+buoyancy

4/2/19ATMS 502 - Spring 2019

21

� Full program 5 equations
¡ pressure gradient & buoyancy highlighted. This is

test “A”

u3 = u3 + …; w3 = w3 + …; set u, w BCs; p3 = p1 + …

Program 5: Structure

IC
calls

advect1d
for theta

Start step:
u3=u1
w3=w1
t2=t1

Update
if first step: n+1 > n
otherwise: n > n-1, n+1 > n

Advection

• u, w (flow)
• temperature

Plot

Stats

4/2/19

22

ATMS 502 - Spring 2019

BC

Diffusion

• u, w: eval at (n-1)
• q: evaluate at (n)

PGF
pressure gradient terms
• u, w: n-1 > n+1
• p’ : n-1 > n+1

set u, w, p’ = 0
set q

perturbation(s)

Each routine handles one process.
O
nly

advection is directionally split.
PG

F updates u3,w
3; then, p3=p1+f(u3,w

3)

Full model
physics are

shown.

Program 5: test case “A”

IC

Start step:
u3=u1
w3=w1
t2=t1

Update
if first step: n+1 > n
otherwise: n > n-1, n+1 > n

Advection

not done.

Plot

Stats

4/2/19

23

ATMS 502 - Spring 2019

BC

Diffusion

not done.

PGF
pressure gradient terms
• u, w: n-1 > n+1
• p’ : n-1 > n+1

set u, w, p’ = 0
set q

perturbation(s) Test “A”

• in this
test we
only use
processes
in “PGF”

• other
routines
are not
called

• q does not
change
from the
IC values.

Program 5: Dimensions

4/2/19ATMS 502 - Spring 2019

24

� Array dimensions
¡ Theta (q) is treated as before, except ...

÷ we have added a dissipation term
¡ Your 2-D arrays : NX ≠ NZ !!!
¡ You have additional 2-D arrays now that we are nonlinear:

÷ arrays for U, W are now time-evolving and need ghost zones!
÷ new array: P (for perturbation pressure. needs ghost zones too)

¡ New 1-D arrays
÷ for density at theta/u/p levels (altitudes)
÷ for density at w-levels (in-between those for theta/u/p)

¢ this density is not time-varying. Set it only once...
÷ other arrays are used as part of initialization

¢ and are never needed again.

Program 5: BCs

4/2/19ATMS 502 - Spring 2019

25

� Boundary conditions (B.C.’s)
¡ Z: B.C.’s as before

÷ zero-gradient
÷ (w: zero@ top, bottom)

¡ X: BCs
÷ symmetric B.C.’s

¢ for W, P, q
÷ asymmetric in X

¢ only for U

Program 5: Time integration

4/2/19ATMS 502 - Spring 2019

26

� Inside main program
¡ Before integration loop:

÷ tstep = ∆t
¡ Main integration loop, near top:

÷ t2 = t1
÷ u3 = u1
÷ w3 = w1
÷ call subroutines advection, diffusion, pgf

� Inside subroutines advection, diffusion, pgf
÷ t2 = t2 + ∆t • [forcing terms]
÷ u3 = u3 + tstep • [forcing terms]
÷ w3 = w3 + tstep • [forcing terms]

This is the first part of
un+1 = un-1 + tstep*terms …

� Remember:
¡ Theta is forward-time
¡ Everything else is centered-time

Program 5: Update

4/2/19ATMS 502 - Spring 2019

27

� Inside main program
¡ Update step, bottom of integration loop

÷ if (this was the first time step)
u2 = u3 copy n+1 data over (replacing) “n” array
w2 = w3 copy n+1 data over (replacing) “n” array
p2 = p3 copy n+1 data over (replacing) “n” array
t1 = t2 copy n+1 data over (replacing) “n” array
tstep = 2•∆t from now on, take 2∆t steps.

÷ otherwise (time step 2 onwards)
u1 = u2; u2 = u3 copy n > n-1, and n+1 > n
w1 = w2; w2 = w3 copy n > n-1, and n+1 > n
p1 = p2; p2 = p3 copy n > n-1, and n+1 > n
t1 = t2 theta is forward time, always.

Review: Program 5 coding

4/2/19ATMS 502 - Spring 2019

28

� Changes and additions for:
¡ initial condition routine

÷ no spatial variation specified for wind (or pressure)
÷ multiple perturbations for theta

¡ boundary condition routine
÷ two dimensions: edges

¡ main time step loop: starting
÷ beginning the leapfrog time step; preparing theta

¡ main time step loop: finishing
÷ switching from forward to leapfrog time

¡ routines
÷ advection, diffusion, and pgf (pressure-gradient-force/buoyancy)

Program 5: Questions

4/2/19ATMS 502 - Spring 2019

29

� Ghost points – when? where?
¡ To simplify things for myself I dimensioned almost everything

0:nx+1, 0:ny+1, i.e. one ghost point.
¡ But what is really needed ? discuss 1-D, 2-D

� Official case not yet ready
¡ yes.

� “nx” and “nz” refer to – what variable?
¡ theta (potential temperature) and p (perturbation pressure).

� Grid points or cells?
¡ yes. Consider as points except in context of Piecewise Linear method

� What limits of arrays? discuss
� Diffusion: X, Z, both, how? discuss
� Strang splitting – not yet

Program 5: Coding practice

4/2/19ATMS 502 - Spring 2019

30

� Starting a time step
¡ Before doing anything else:

÷ t2 = t1
÷ u3 = u1
÷ w3 = w1
÷ All later routines add to these “n+1” arrays.

¡ So in advection, diffusion, PGF, you will code …
÷ t2 = t2 + … ∆t • [forcing terms]
÷ u3 = u3 + … 2∆t • [forcing terms] (same for W)

¡ Exception: pressure
÷ Only one step to pressure: p3 = p1 + 2∆t • [forcing terms]

This also lets us turn processes
on or off – we have taken the
‘first part’ of each time step –
before starting.

Program 5: First time step

4/2/19ATMS 502 - Spring 2019

31

� Straightforward coding would look like …
¡ Forward step:

÷ u2 = u1 + ∆t • [forcing terms]
¡ Centered step:

÷ u3 = u1 + 2∆t • [forcing terms]
¡ Writing all that code out twice is annoying.

� Instead, we will do …
¡ For the first time step, tstep=∆t; otherwise, tstep=2∆t
¡ And so our equations look like …

÷ u3 = u1 + tstep • [forcing terms] (same for W, P)
÷ works because we also initialize our arrays u1=u2=0 (same for W, P)

¡ Except for the temperature: q is always forward in time.

Program 5: Where do I start?

4/2/19ATMS 502 - Spring 2019

32

� Suggested order of development for Program 5
¡ Modify program 2 or 3 code to everywhere to assume NX ≠ NZ
¡ Change physical dimensions; domain no longer [-0.5 :+0.5]
¡ Create initial q field, plot ; verify it looks OK.

÷ So the initial q plot will look like a circular field surround by zeroes
¡ Set up all arrays:

÷ u, w, p: three time levels, 2-D
÷ t: two time levels, 2-D
÷ density (for p/t/u levels) and density for w-levels: 1-D

¡ Create initial 1-D base-state fields for density
¡ Create routine for boundary conditions
¡ Test in this order: PGF; linear q advection q; q diffusion.
¡ Now: full physics.

θ −θ

