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Two-variable vol endering fi tionality of ezViz gives the volumetric view of kinetic

dissipation (yellow/red) and thermal dissipation (blue) fields at a particular stage of

atmospheric gravity wave breaking and the evolution of the accompanying turbulence.

These volume-rendering images show clearly and concisely the relationship between kinetic and thermal .

dissipations at different phases of the primary gravity wave and the evolutions with time. Data AnalgSlS and Assessment Center
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Time differencing




Time differencing: stages vs. levels

» Review: time differencing includes
o 1) how we express the time derivative
o at what time levels we evaluate the spatial derivatives

» Levels
o ... refers to how many time levels are in our scheme

o Lax-Wendroff: 2-level. Leapfrog: 3-level
» Stages

o ... refers to how many times we evaluate the spatial derivatives
o Lax-Wendroft: single-stage. Runge-Kutta: 2 or more stages




Summary: Single-stage, 2-level schemes

» Single-stage: evaluate spatial derivatives once
o 2-level: there are two time levels, n and n+1

Euler method: o=1,3=0

£¢n+l — ¢” _ aF(¢”) + /3F(¢n+1), o+ /3 = 1} Backward method: 0:=0,B=1

At Trapezoidal method: o=p=1/2
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Schemes: Forward F * Backward B * Trapezoidal T o 2-order Runge-Kutta R ¢ Matsuno M
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Summary: 3

» Single-stage: evaluate spatial derivatives once
» 3-level: there are 3 time levels, n-1, n, n+1

a,+3 a, -1
¢n+1_ a¢n+a2¢n—1 ) N a=1-a,; B, = > By = >
( 1 ) = /J)IF(QZ) )+/32F(¢ 1) (B restrictions make schemes af

At

least 2"-order - Durran p. 58)

¢ Leapfrog. OL»]:O, OL2=1 : B~|=2, B2=O Time filtering; comp. mode; even/odd ..

° Le a pfrOQ-tra peZO|da| A predictor-corrector method. :'eap frog'f:dp ezoic{lgll"
2”d-or<-Jer unlﬁ<e fime:filfered LF; (¢" =¢"" +2a1F (") o \\
computational mode damped Lb,m g +(At/2)[F(¢”)+F(¢*)ﬂ i

¢ AdamS-BaSthFth “| Adams-Bashforth”

1Al

2rdorder, fwd time, weak instability;( ., 3 o1
computational mode damped. [¢ =9 +(At)[§F(¢ )_EF((P )B
Higher-order versions of A-B exist. S

ATMS 502 - Spring 2019 4/11/19

--------------------------




Overview: RK

» Objective: higher-order accuracy in time

» Multistage: Durran §2.3: evaluate spatial F terms
at several times between nAt, (n+1)At

» Multistep: Durran §2.4: information from prior
levels incorporated in integration formula.

Multistep: extra storage needed, but fewer evaluations of F
Multistage or multistep: computational modes arise.
Multiple forms of RK (Runge-Kutta) methods exist, e.g. low-storage form.

» More steps/or/stages: more (computational) work.
Good: less restrictive time step. Bad: more computational modes.
For more information: see Durran § 2.3.2, RK3 and RK4 methods.
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Overview: 3-D

» Problem: order of directional operators matters.

 Theory: Durran & 4.3: compares exact (that from
Taylor series) vs. finite difference results
Let’s call X-operator F, ... and ... Y-operator F, ...
Then if F,F, = F,F,, we say the operators commute

» Plan: if operators don’t commute —
We can still get higher temporal accuracy ...

Use Strang Splitting. In 3D: Durran eq. 4.59 p. 172 —
[F(ae2)] Fy(ae 2)[ Fy(an) [ Fo(ae 12) [ Fi(ae12)]

ATMS 502 - Spring 2019 4/11/19



Time differencing summary: Durran § 2.6

» Durran table 2.1-2.2: summary of methods
O Order of scheme

o Storage factor

« Number of full arrays needed

« Not given if implicit; depends on method
o Efficiency factor

« Largest stable step + by # evaluations of F

O Max s
« largest stable wAt

h=At; s=wAt!!

Table 2.1 Summary of methods for the solution of ordinary differential equations. The second-
and third-order Runge-Kutta methods are low-storage variants; b = At

DURRAN 2"° ED. TABLES 2.1-2.2, PP 83-84 R

Method Order Formulae Storage Efficiency Amplification Phase

Method factor  factor factor error Max s
Forward 1 ¢n+l = ¢n + hF(¢n) s2 S2

Forward 2 0 14+ — 1—— 0
Backward 1 On+1 = &n + hF (Pn+1) - % 2 3




Aliasing, nonlinear instability,
and conservation




(Nonlinear) advection

» Back to the familiar.

ou ou ou O (u’
—+u—=0 -or- + =0
ot ox ot ox\ 2

o The problem for finite differences lies in the multiplication.*

» Let u=sin(kx); then
%

[u =sinkx = —(uz) = ksin2kx}
ox

o What effective wavenumber are we
working with now?




Aliasing




Aliasing: Example

. 90
Some §tudles ha\(e
investigated gravity
waves near weather 72
fronts.
They appeared in 54
observations

. . Z(km)
They appeared in high-
resolution simulations. > 8
Some of the modeled 8
waves were not real.
They appeared at high
horizontal resolution.

, | R 4

-600 -200 200 600 - 1000
| Y(km)

FIG. 2. Vertical velocity at 7 = 2240 min from the beginning of

the experiment. The experiment that produced this figure had a hor-
izontal resolution of 2.5 km and a vertical resolution of 320 m. This

Ol
-1000
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Spurious waves

7000
318
AX = 27.9 KM - b \\ 0

m\ WAVES

» Iga (2005) - waves on a front. Vertical velocity is shown.
e Only change is decrease in Ax.




Spurious waves

GLEVEL=9,|dz=300m

7
WAVES

DISAPPEAR. ,

» Iga (2005) - waves on a front. Vertical velocity is shown.
Ax=14 km. Only change is decrease in Az.




* Snyder et al. 1993.
Only change is Az.

» Waves appear at
high horizontal
resolution

» Waves disappear at
increased vertical
resolution.

e Why?

-800 - 400 0 400 800
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One possibility...

» Reducing Ax while
keeping Az constant

(b) w ot B=1.4; Az=50 m

9 RPN S U W SN S I T S I S S

» .. results in small
horizontal waves with
small vertical scales ...
too small to be
resolved.

» Uh-oh!

8 8§ 8 88 88 8¢
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Aliasing
_________________________________________________________________________________

INITIAL CONDITIONS
L1 I O O L

» Simple differential @ ScaLaR LD 6 “TRUE” SOLUTION :
(t) - difference (x) ] E
equation results 1t :

TN 2

» Problem: linear \ T .
equation, Variable WIND FIELD|(SOLID)
soeeienis D1 o €D
O in other WOI'dS, C=C(X), I

but not (t) 0

» Small scales grow
preferentially

Solid : ¢, = -uod, ¢

Dash: ¢, =-i'd.¢

RN 111 L1l




Aliasing
_________________________________________________________________________________

* Where do unresolved waves “go” ?

o Durran eqn. 3.91: a 2 N
Y Ly L
o Examples: = Ax Ax
x 2AX  2.5AX—— 10AX 27T —JT
k +k,+—, itk +k, <—
« (4/3)Ax 4Ax
\_ Ax Ax )
ol Note if both waves are 4Ax or longer: no aliasing
(‘T !" i ~’s* wave ;um>ber
KL (k) o

le——— resolved waves —*oAXx

» LARGER WAVENUMBER
LONGER WAVELENGTHS »




Aliasing

Aliasing

» Schopf (2005) -
Nonlinear | m |
doubling and k& ok
aliasing “ e
Nonlinear Doubling
» Energy “folded” | | |
into low k 0 L ok ¢ ot

» Short waves
generate long

wave energy /\
| | |

* _
0 (2k) = k k 2k 2k

max max

Nonlinear Doubling and Aliasing




If energy flows into wavenumbers just above k
| LI |

0 k k 2k
max

2 max 3

maX L

Aliasing folds it back to wavenumbers just below k
builds up energy near grid resolution limit

max

Further nonlinear interaction enhances flow into wavenumbers just
above k,..: accelerates process

This is nonlinear instability.

What about amplitude?
More energy at low k. Say k, just below kmax ...
Nonlinear (k,+k,) has more energy if k, small.
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Nonlinear instability

= 2AX ¢ 2.5AX — 10AX

* 2AX ¢ 8AX — 2.7AX w0l Results of nonlinear
interaction between two
waves (one is ZAx)

« more energy: small k

Wavenumber (radians m™')

EREL S

Spectral Density (m? s)
}

(XVU) Y)3US[DABM (PIA|0SI) pasel|y

10+
S - T Input wavelength (7Ax)
Wavelength (km)




Input

Input

+ 2AX =

aliased

final

wave |k/kmax|k/kmax|k/kmax NAx
2.1 AX 0.95 1.95 0.05 42 AX
5.0 AX 0.40 1.40 0.60 3.3 AX
10 AX 0.20 1.20 0.80 2.5 AX
20 AX 0.10 1.10 0.90 2.2 AX
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Aliasing in wavenumber space




