#### Atms 502, CSE 566

# Numerical Fluid Dynamics



Two-variable volume-rendering functionality of ezViz gives the volumetric view of kinetic dissipation (yellow/red) and thermal dissipation (blue) fields at a particular stage of atmospheric gravity wave breaking and the evolution of the accompanying turbulence. These volume-rendering images show clearly and concisely the relationship between kinetic and thermal dissipations at different phases of the primary gravity wave and the evolutions with time.



#### TUE., MAR. 26, 2019

ATMS 502 - Spring 2019

Image: Breaking gravity wave & turbulence

4/11/19

#### ATMS 502 CSE 566

#### Tuesday, 26 March 2019

Class #19

#### **Plan for Today**

- 1) Review
  - Visualization
  - HPC architecture
  - o Amdahl's law, parallel performance
- 2) Time differencing

   including time differencing table
- 3) Nonlinear instability & aliasing
  o problems and methods to mitigate them

# Time differencing

З

#### "STAGES" AND "LEVELS" HIGHER ORDER ACCURACY

#### Terminology:

- n, n+1 ... time levels
- $\alpha$ ,  $\beta$ , ... coefficients of spatial derivatives
- *F* approximations to spatial derivatives

#### Time differencing: stages vs. levels

- *Review:* time differencing includes
  - 1) how we express the *time derivative*
  - at what *time levels* we evaluate the *spatial derivatives*
- Levels
  - ... refers to how many time levels are in our scheme
  - Lax-Wendroff: 2-level. Leapfrog: 3-level
- Stages
  - ... refers to how many times we evaluate the spatial derivatives
  - Lax-Wendroff: *single-stage*. Runge-Kutta: *2 or more stages*

## *Summary:* Single-stage, **2**-level schemes

- Single-stage: evaluate spatial derivatives <u>once</u>
- **2-level**: there are two time levels, *n* and n+1

$$\frac{\phi^{n+1} - \phi^n}{\Delta t} = \alpha F(\phi^n) + \beta F(\phi^{n+1}), \ \alpha + \beta = 1$$

<u>Euler method</u>:  $\alpha$ =1, $\beta$ =0 <u>Backward method</u>:  $\alpha$ =0, $\beta$ =1 Trapezoidal method:  $\alpha$ = $\beta$ =1/2



Schemes: Forward F • Backward B • Trapezoidal T • 2<sup>nd</sup>-order Runge-Kutta R • Matsuno M

ATMS 502 - Spring 2019

### Summary: Single-stage, 3-level schemes

6

Single-stage: evaluate spatial derivatives <u>once</u>
3-level: there are 3 time levels, *n-1*, *n*, *n+1*

$$\frac{\left(\frac{\phi^{n+1} - \left(\alpha_1 \phi^n + \alpha_2 \phi^{n-1}\right)}{\Delta t} = \beta_1 F\left(\phi^n\right) + \beta_2 F\left(\phi^{n-1}\right) \qquad \alpha_1 = 1 - \alpha_2; \quad \beta_1 = \frac{\alpha_2 + 3}{2}, \quad \beta_2 = \frac{\alpha_2 - 1}{2} \\ (\beta \text{ restrictions make schemes at least } 2^{\text{nd-order}} - \text{Durran p. 58})$$

- Leapfrog:  $\alpha_1=0$ ,  $\alpha_2=1$ ,  $\beta_1=2$ ,  $\beta_2=0$  Time filtering; comp. mode; even/odd ..
- Leapfrog-trapezoidal A predictor-corrector method.

2<sup>nd</sup>-order unlike time-filtered LF; computational mode damped

<u>Adams-Bashforth</u>

2<sup>nd</sup>-order, fwd time, weak instability; computational mode damped. Higher-order versions of A-B exist.

$$\phi^{n+1} = \phi^n + (\Delta t) \left[ \frac{3}{2} F(\phi^n) - \frac{1}{2} F(\phi^{n-1}) \right]$$



ATMS 502 - Spring 2019

### Overview: Multi-stage (RK)/step methods

- Objective: higher-order accuracy in time
- Multistage: *Durran § 2.3*: evaluate spatial F terms at several times between  $n\Delta t$ ,  $(n+1)\Delta t$
- Multistep: *Durran § 2.4*: information from prior levels incorporated in integration formula.
  - Multistep: extra storage needed, but fewer evaluations of *F*
  - Multistage *or* multistep: computational modes arise.
  - Multiple forms of RK (Runge-Kutta) methods exist, e.g. low-storage form.
- More steps/or/stages: more (computational) work.
  - Good: less restrictive time step. Bad: *more* computational modes.
  - For more information: see Durran § 2.3.2, RK3 and RK4 methods.

## *Overview:* Higher time accuracy in **3-D**

8

- **Problem:** order of directional operators matters.
- Theory: *Durran §4.3*: compares exact (that from Taylor series) vs. finite difference results
  - Let's call X-operator  $F_1$  ... and ... Y-operator  $F_2$  ...
  - Then if  $F_1F_2 = F_2F_1$ , we say the *operators* commute

#### • Plan: if operators *don't* commute –

- We can still get higher temporal accuracy ...
- Use Strang Splitting. In 3D: Durran eq. 4.59 p. 172  $\left[ \left[ F_1(\Delta t/2) \right] \left[ F_2(\Delta t/2) \right] \left[ F_3(\Delta t) \right] \left[ F_2(\Delta t/2) \right] \left[ F_1(\Delta t/2) \right] \right] \right]$

## Time differencing summary: Durran § 2.6

9

- Durran table 2.1-2.2: summary of methods
  - o <u>Order of scheme</u>
  - o <u>Storage factor</u>
    - × Number of full arrays needed
    - × Not given if implicit; depends on method
  - o <u>Efficiency factor</u>
    - Largest stable step ÷ by # evaluations of F

- 0 <u>Max s</u>
  - × largest stable ∞∆t

 $h=\Delta t; s=\omega\Delta t !!$ 

4/11/19

|   | able 2.1 Summary of methods for the solution of ordinary differential equations. The second-<br>ind third-order Runge–Kutta methods are low-storage variants; $h = \Delta t$ |       |                                                                              | DURRAN 2 <sup>ND</sup> ED. TABLES 2.1-2.2, PP 83-84 |         |            |                     |                     |       |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------|-----------------------------------------------------|---------|------------|---------------------|---------------------|-------|
|   | Method                                                                                                                                                                       | Order | Formulae                                                                     | Method                                              | Storage | Efficiency | Amplification       | Phase               | Max s |
| l | Forward                                                                                                                                                                      | 1     | $\phi_{n+1} = \phi_n + hF(\phi_n)$<br>$\phi_{n+1} = \phi_n + hF(\phi_{n+1})$ |                                                     | lactor  | Tactor     | Tactor              | enor                |       |
|   | Backward                                                                                                                                                                     | 1     |                                                                              | Forward                                             | 2       | 0          | $1 + \frac{s^2}{2}$ | $1 - \frac{s^2}{3}$ | 0     |

ATMS 502 - Spring 2019

# Aliasing, nonlinear instability, and conservation

10

**REFERENCES:** 

DURRAN SECTION § 4.4.1, 4.5 ROBERT WILHELMSON NOTES HALTINER AND WILLIAMS SECTION 5-11-1

PAUL SCHOPF NOTES, SCHOOL OF COMPUTATIONAL SCIENCES,

GEORGE MASON UNIVERSITY (MASON.GMU.EDU)

### (Nonlinear) advection

Back to the familiar.

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0 \quad -\text{ or } - \frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left( \frac{u^2}{2} \right) = 0$$

• The problem for finite differences lies in the multiplication.\*

• Let u=sin(kx); then

$$u = \sin kx \implies \frac{\partial}{\partial x} (u^2) = k \sin 2kx$$

• What effective wavenumber are we working with now?

## Aliasing

12

• Even if u=sinkx is resolved...

• If ... (kmax/2) < k < kmax,

• the nonlinear term puts energy into:

kmax < k < 2kmax

- This is not resolvable!
  - ✓ It will appear in other, resolvable wavelengths.
  - $\checkmark$  This is aliasing.





Iga (2005) - waves on a front. Vertical velocity is shown.
Only change is decrease in ∆x.





• Iga (2005) - waves on a front. Vertical velocity is shown.  $\Delta x=14$  km. Only change is decrease in  $\Delta z$ .

ATMS 502 - Spring 2019

7000

6500

6000 5500

#### Spurious waves



- Snyder et al. 1993. Only change is  $\Delta z$ .
- Waves <u>appear</u> at high *horizontal* resolution
- Waves <u>disappear</u> at increased *vertical* resolution.

• Why?

#### **Spurious waves**





One possibility...

- Reducing  $\Delta x$  while keeping  $\Delta z$  constant
- .. results in small horizontal waves with small vertical scales ... too small to be resolved.

• Uh-oh!

4000 3500 2500

1500

# Aliasing

- Simple differential (t) - difference (x) equation results
- <u>Problem</u>: linear equation, variable coefficients
  - in other words, c=c(x), but not (t)
- Small scales grow preferentially









- Aliasing folds it back to wavenumbers *just below*  $k_{max}$ 
  - × builds up energy near grid resolution limit
  - × Further nonlinear interaction enhances flow into wavenumbers just above  $k_{max}$ : accelerates process
  - × This is nonlinear instability.
  - What about amplitude?
    - × More energy at low k. Say  $k_2$  just below kmax ...
    - × Nonlinear  $(k_1+k_2)$  has more energy *if*  $k_1$  *small*.



#### Aliasing in wavenumber space 23) Input Input aliased $+ 2\Delta x =$ final k / kmax k / kmax k / kmax wave $N\Delta x$ 2.1 ∆x 0.95 1.95 0.05 42 Δx 5.0 Δx 0.40 1.40 0.60 3.3 ∆x 0.20 1.20 10 ∆x 0.80 2.5 ∆x 1.10 0.10 20 Δx 0.90 2.2 ∆x

