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ATMS 502
CSE 566

Thursday,
7 March 2019

Class #16

Plan for Today

� 1) Skamarock & Klemp
¡ Global/local refinement
¡ A full AMR method, explained

� 1) Space differencing
¡ Differential-difference approach
¡ Phase speed & group velocity
¡ Impacts of higher order, added diffusion

� 2) Programming input/output
¡ C and Fortran considerations

� 3) Program 4: continued
¡ Nest placement / movement
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Review from last class



Review: Space Differencing
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� Differential-difference eqn:
¡ 2nd-order space: Substitute:

¡ Solve for frequency w, which may be complex; here ! = #$%&'
∆)

� Once we have the frequency: 

¡ Phase speed: 

÷ perfect (=c) for infinite waves where k∆x=0
÷ zero for 2∆x waves

¡ Group velocity:

÷ perfect for infinite waves, = -c for 2∆x waves.
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Review: 2nd vs. 4th order space diff.
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� Summary: 2nd-order centered space differencing

� Phase speed (left), group velocity (right)
� 4th better at “intermediate” wavelengths

Durran figs. 3.3, 3.5

Numerical vs. true
phase speed “c”

Numerical vs. true
group velocity “c”

higher is better !

2nd-order 4th-order



Review: Accuracy and Order
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� “Centered [even-ordered] schemes preserve the 
amplitude of each individual Fourier component, 
[but] the various components propagate at 
different speeds [and the result is ugly]

� “Switching to a higher-order
scheme does not improve the
performance of finite-difference
methods when they are used to
model poorly resolved features

One-sided 1st-order

Centered 2nd-order

Centered 4th-order

Durran fig. 3.6



Review: Explicit Artificial Dissipation
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� Added explicit damping can be beneficial

• Higher order derivatives [in damping] damp intermediate wavelengths less.
• Added damping can reduce the dispersion errors.

6th-derivative filter

Each case: 4th-ordered centered space differencing!

4th-derivative filter

Durran fig. 2.15 Durran fig. 2.16
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Damping factor 
for different order derivatives



A D A P T I V E  M E S H  R E F I N E M E N T  PA P E R
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Skamarock & Klemp

See notes from last class!



N E S T  P L A C E M E N T  A L G O R I T H M
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Program 4



Nest location
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� About that nest location -
¡ This is what my code sequence

looks like, in the routine in which
I compute the truncation error.
÷ loop:  all i = 3:nx-2
÷ loop:  all j = 3:ny-2

¢ xtrunc = (expression in X direction: i-2, i-1, i, i+1, i+2)
¢ ytrunc = (expression in Y direction: j-2, j-1, j, j+1, j+2)
¢ trunc_error(i,j) = max( abs(xtrunc) , abs(ytrunc) )

÷ end loop j
÷ end loop i

¡ Now I work with trunc_error() array - get max value, find 
truncation error "edges", average to find nest center.

j

Coarse

grid
i



Determining the nest location (2)
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� Example of finding left, 
right edges of T.E. region
¡ For each i column, left to 

right … check TE(i,j) for all j
rows – determine max value

¡ Find first and last column (i) 
for which max ≥ threshold.

� Do same for top/bottom.
� Average I1,I2,J1,J2 for 

nest center.  Nest edges
depend on nest size.

I1 I2

Cartoon of T.E. on coarse grid.

i

j



Program 4 questions (1)
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� Handling the nest
¡ four variables define edges of the nest

÷ these variables are integers holding the
coarse grid coordinate of the nest (discuss)

¡ when placing the nest for the first time,
setting boundary values for the nest,
doing feedback ...
÷ then these four are the variables dointerp uses.
÷ the other variables nestX1old, nestX2old, nestY1old... are ignored.

¡ when moving the nest:
÷ nestX1, nestX2, nestY1, nestY2 = location where nest is to be moved
÷ nestX1old, nestX2old, etc ... contain old (current) nest location

nestX1

nestY1

nestY2

nestX2

Nest

grid

Coarse

grid



Program 4  Steps, part 1
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1. You need rotational flow I.C. code (from program 2)
2. Copy my program 4 files on Stampede
3. Try interpolation code (F90 or C)
4. “Run” code with a passive “nest”
5. Develop truncation error code

(find x, y truncation error, store 2d array of max(abs(xerror,yerror))...

6. Determine nest location
get x,y error bounds; average = nest center; determine X1,X2,Y1,Y2

Simply use cone center 
for nest location; then 
interpolate coarse > nest

13



Program 4  Steps, part 2
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7. Alter code to place nest at start (n=1); 
move nest afterwards (at time step n=5,10,...)

8. Boundary conditions for nest
(Easy: Call dointerp with flag to just set nest BCs)

9. Alter integrate routine for nest
(This is just a matter of what points are updated – 2:nx-1 on nest, etc)

10. Evolve the nest
No feedback!  Just get B.C’s from coarse grid, integrate/update nest

11. Add feedback.
By now you know your nest is ‘ok’ – do this step last.

14



Program 4  variables
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� You need to add:
¡ Extra storage (s1, s2 for nested grid)
¡ Nest-specific parameters

÷ Time step for nest
÷ Grid spacing for nest

¡ New variables – read these in
÷ Grid refinement ratio (an integer. time & space!)
÷ Current nest location info (first, last grid points in X,Y)
÷ Nest update frequency (an integer; 1 = every step)
÷ Feedback option

¢ on or off.
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Program 4  Code restructuring
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� Changes to problem 3 layout:
¡ Just one advection method (Lax-W)
¡ Advection routine called for both grids

÷ Boundary condition will differ between grids
¡ Additional time loop for nested grid

÷ Boundary conditions from coarse grid
÷ Many nested grid steps for each coarse grid step

¡ Feedback code
¡ Error calculations

16
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Finite volume method; van Leer

Handout:
� Hourdin and Armengaud, 

1999: Use of finite volume 
methods for atmospheric 
advection of trace species
¡ flux forms
¡ monotonicity
¡ "approximating the sub-

grid-scale distribution by a 
polynomial" (HA99 p. 823)

Overview:
� van Leer published five 

papers between 1973-79
� J. Comp. Phys., vol. 23, 

276-299 (1977):

“Towards the ultimate 
conservative difference 
scheme: IV. A new 
approach to numerical 
convection”



van Leer (1977)
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� This all applies to the flux form of our equations e.g.

� Conceptually:
¡ grid point values are averages within a grid zone
¡ local functions describe field changes within the zone

÷ piecewise constant, piecewise linear, piecewise parabolic
¡ we integrate under local functions at time t

that will be in grid zone of interest [0,∆x] at t+∆t.
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C040:  Van Leer methods • C042:  Flux form of equations



Upstream – piecewise constant

� Step 1 –

� identify grid zone 
averages…

� X coordinate is 
Courant number s

� Grid box runs from
[0-to-1]•∆x
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� Step 2 –

� look at distribution 
before and after 
advection takes 
place

� Step 3 -

� Compute new grid 
zone averages.

� Step 4 -

� The averages are the 
function here (for
piecewise constant)

� These are the initial 
values for the next
time step.



van Leer (1977)
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� New value from integrating under 
piecewise constant function at time t
that will be in the grid zone [0,∆x] at t+∆t.

� Piecewise constant in each zone, so:
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Grid-point value f(j) 
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of the function over the 
grid cell (see Durran, 
�1.3.1, p. 27)



van Leer (1977)
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� van Leer notation ... � Fluxes …

¡ note ∆t is already included
in (is part of) the fluxes.
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Greater accuracy:  Piecewise linear
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� Our general update formula:
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Piecewise linear
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� Van Leer piecewise linear: Scheme I
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Piecewise linear & beyond
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� Van Leer piecewise linear: Scheme I

� How could we improve our method?
¡ 1. _________________________________

¡ 2. _________________________________
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Like piecewise-constant:
fluxes from zone averages.

slopes in zones.
- can be evaluated many ways.

scheme 1: centered differences
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C006: Finite difference approximations  C040:  Van Leer methods


