
Atms 502, CSE 566

Numerical Fluid Dynamics

Thu., Mar. 7, 2019

Galaxy formation – Burns, Greif, Bromm, and Klessen –- Texas Advanced Computing Center-- www.tacc.utexas.edu/research/gallery

3/7/19ATMS 502 - Spring 2019 1

ATMS 502
CSE 566

Thursday,
7 March 2019

Class #16

Plan for Today

� 1) Skamarock & Klemp
¡ Global/local refinement
¡ A full AMR method, explained

� 1) Space differencing
¡ Differential-difference approach
¡ Phase speed & group velocity
¡ Impacts of higher order, added diffusion

� 2) Programming input/output
¡ C and Fortran considerations

� 3) Program 4: continued
¡ Nest placement / movement

2

3/7/19ATMS 502 - Spring 2019

ATMS 502 - Spring 2019 3/7/19

3

Review from last class

Review: Space Differencing

3/7/19ATMS 502 - Spring 2019

4

� Differential-difference eqn:
¡ 2nd-order space: Substitute:

¡ Solve for frequency w, which may be complex; here ! = #$%&'
∆)

� Once we have the frequency:

¡ Phase speed:

÷ perfect (=c) for infinite waves where k∆x=0
÷ zero for 2∆x waves

¡ Group velocity:

÷ perfect for infinite waves, = -c for 2∆x waves.

€

c
2c

=
ω

k
=
c sinβ

kΔx
; for small kΔx, c

2c
≈ c 1−

β 2

6











€

cg2c =
∂ω

∂k
=
∂

∂k

c sinβ

Δx









 = c cosβ()

€

du j

dt
+ c

u j+1 − u j−1

2Δx









 = 0

€

u j (t) = e
i kjΔx−ω2c t()

Review: 2nd vs. 4th order space diff.

3/7/19ATMS 502 - Spring 2019

5

� Summary: 2nd-order centered space differencing

� Phase speed (left), group velocity (right)
� 4th better at “intermediate” wavelengths

Durran figs. 3.3, 3.5

Numerical vs. true
phase speed “c”

Numerical vs. true
group velocity “c”

higher is better !

2nd-order 4th-order

Review: Accuracy and Order

3/7/19ATMS 502 - Spring 2019

6

� “Centered [even-ordered] schemes preserve the
amplitude of each individual Fourier component,
[but] the various components propagate at
different speeds [and the result is ugly]

� “Switching to a higher-order
scheme does not improve the
performance of finite-difference
methods when they are used to
model poorly resolved features

One-sided 1st-order

Centered 2nd-order

Centered 4th-order

Durran fig. 3.6

Review: Explicit Artificial Dissipation
7

� Added explicit damping can be beneficial

• Higher order derivatives [in damping] damp intermediate wavelengths less.
• Added damping can reduce the dispersion errors.

6th-derivative filter

Each case: 4th-ordered centered space differencing!

4th-derivative filter

Durran fig. 2.15 Durran fig. 2.16

3/7/19ATMS 502 - Spring 2019

Damping factor
for different order derivatives

A D A P T I V E M E S H R E F I N E M E N T PA P E R

ATMS 502 - Spring 2019 3/7/19

8

Skamarock & Klemp

See notes from last class!

N E S T P L A C E M E N T A L G O R I T H M

ATMS 502 - Spring 2019 3/7/19

9

Program 4

Nest location

3/7/19ATMS 502 - Spring 2019

10

� About that nest location -
¡ This is what my code sequence

looks like, in the routine in which
I compute the truncation error.
÷ loop: all i = 3:nx-2
÷ loop: all j = 3:ny-2

¢ xtrunc = (expression in X direction: i-2, i-1, i, i+1, i+2)
¢ ytrunc = (expression in Y direction: j-2, j-1, j, j+1, j+2)
¢ trunc_error(i,j) = max(abs(xtrunc) , abs(ytrunc))

÷ end loop j
÷ end loop i

¡ Now I work with trunc_error() array - get max value, find
truncation error "edges", average to find nest center.

j

Coarse

grid
i

Determining the nest location (2)

3/7/19ATMS 502 - Spring 2019

11

� Example of finding left,
right edges of T.E. region
¡ For each i column, left to

right … check TE(i,j) for all j
rows – determine max value

¡ Find first and last column (i)
for which max ≥ threshold.

� Do same for top/bottom.
� Average I1,I2,J1,J2 for

nest center. Nest edges
depend on nest size.

I1 I2

Cartoon of T.E. on coarse grid.

i

j

Program 4 questions (1)

3/7/19ATMS 502 - Spring 2019

12

� Handling the nest
¡ four variables define edges of the nest

÷ these variables are integers holding the
coarse grid coordinate of the nest (discuss)

¡ when placing the nest for the first time,
setting boundary values for the nest,
doing feedback ...
÷ then these four are the variables dointerp uses.
÷ the other variables nestX1old, nestX2old, nestY1old... are ignored.

¡ when moving the nest:
÷ nestX1, nestX2, nestY1, nestY2 = location where nest is to be moved
÷ nestX1old, nestX2old, etc ... contain old (current) nest location

nestX1

nestY1

nestY2

nestX2

Nest

grid

Coarse

grid

Program 4 Steps, part 1

3/7/19ATMS 502 - Spring 2019

1. You need rotational flow I.C. code (from program 2)
2. Copy my program 4 files on Stampede
3. Try interpolation code (F90 or C)
4. “Run” code with a passive “nest”
5. Develop truncation error code

(find x, y truncation error, store 2d array of max(abs(xerror,yerror))...

6. Determine nest location
get x,y error bounds; average = nest center; determine X1,X2,Y1,Y2

Simply use cone center
for nest location; then
interpolate coarse > nest

13

Program 4 Steps, part 2

3/7/19ATMS 502 - Spring 2019

7. Alter code to place nest at start (n=1);
move nest afterwards (at time step n=5,10,...)

8. Boundary conditions for nest
(Easy: Call dointerp with flag to just set nest BCs)

9. Alter integrate routine for nest
(This is just a matter of what points are updated – 2:nx-1 on nest, etc)

10. Evolve the nest
No feedback! Just get B.C’s from coarse grid, integrate/update nest

11. Add feedback.
By now you know your nest is ‘ok’ – do this step last.

14

Program 4 variables

3/7/19ATMS 502 - Spring 2019

� You need to add:
¡ Extra storage (s1, s2 for nested grid)
¡ Nest-specific parameters

÷ Time step for nest
÷ Grid spacing for nest

¡ New variables – read these in
÷ Grid refinement ratio (an integer. time & space!)
÷ Current nest location info (first, last grid points in X,Y)
÷ Nest update frequency (an integer; 1 = every step)
÷ Feedback option

¢ on or off.

15

Program 4 Code restructuring

3/7/19ATMS 502 - Spring 2019

� Changes to problem 3 layout:
¡ Just one advection method (Lax-W)
¡ Advection routine called for both grids

÷ Boundary condition will differ between grids
¡ Additional time loop for nested grid

÷ Boundary conditions from coarse grid
÷ Many nested grid steps for each coarse grid step

¡ Feedback code
¡ Error calculations

16

ATMS 502 - Spring 2019 3/7/19

17

Finite volume method; van Leer

Handout:
� Hourdin and Armengaud,

1999: Use of finite volume
methods for atmospheric
advection of trace species
¡ flux forms
¡ monotonicity
¡ "approximating the sub-

grid-scale distribution by a
polynomial" (HA99 p. 823)

Overview:
� van Leer published five

papers between 1973-79
� J. Comp. Phys., vol. 23,

276-299 (1977):

“Towards the ultimate
conservative difference
scheme: IV. A new
approach to numerical
convection”

van Leer (1977)

3/7/19ATMS 502 - Spring 2019

� This all applies to the flux form of our equations e.g.

� Conceptually:
¡ grid point values are averages within a grid zone
¡ local functions describe field changes within the zone

÷ piecewise constant, piecewise linear, piecewise parabolic
¡ we integrate under local functions at time t

that will be in grid zone of interest [0,∆x] at t+∆t.

∂q
∂t

= −u∂q
∂x

−w∂q
∂z

 ⇒

∂q
∂t

= −
∂
∂x

uq()− ∂
∂z

(wq)+ q ∂u
∂x

+
∂w
∂z

#

$
%

&

'
(

18

C040: Van Leer methods • C042: Flux form of equations

Upstream – piecewise constant

� Step 1 –

� identify grid zone
averages…

� X coordinate is
Courant number s

� Grid box runs from
[0-to-1]•∆x

3/7/19ATMS 502 - Spring 2019

19

� Step 2 –

� look at distribution
before and after
advection takes
place

� Step 3 -

� Compute new grid
zone averages.

� Step 4 -

� The averages are the
function here (for
piecewise constant)

� These are the initial
values for the next
time step.

van Leer (1977)

3/7/19ATMS 502 - Spring 2019

20

� New value from integrating under
piecewise constant function at time t
that will be in the grid zone [0,∆x] at t+∆t.

� Piecewise constant in each zone, so:

€

q
n +1 ≡ q

1/ 2
= q

1/ 2
dx

0

1−σ

∫ + q−1/ 2
dx

−σ

0

∫ σ =
uΔt

Δx

€

q
1/ 2 = q

1/ 2
1−σ() + q −1/ 2

σ

 = q
1/ 2
−σ q

1/ 2
− q −1/ 2()

€

q
1/ 2 = q

1/ 2
− uq

1/ 2
− uq −1/ 2[]

Δt

Δx

Grid-point value f(j)
represents the average
of the function over the
grid cell (see Durran,
�1.3.1, p. 27)

van Leer (1977)

3/7/19ATMS 502 - Spring 2019

21

� van Leer notation ... � Fluxes …

¡ note ∆t is already included
in (is part of) the fluxes.

€

q
1/ 2 = q

1/ 2
−σ q

1/ 2
− q −1/ 2()

 = q
1/ 2
− σq

1/ 2
−σq −1/ 2[]

 = q
1/ 2
− Flux

1/ 2
− Flux−1/ 2[]

n Coding:

€

q
n+1 = qn − Flux

1/ 2
− Flux−1/ 2() +qi

n
Δtδxu

 = qn − σqi() − σqi−1()[] +qi
n Δt

Δx
ui+1

− ui()

 = qn −σ qi − qi−1() if u = constant

Flux(i) ≡ Flux−1/2

 =σq−1/2 =σq(i−1)

Greater accuracy: Piecewise linear

3/7/19

22

� Our general update formula:

€

q
n +1 ≡ q

1/ 2
= q

1/ 2
dx

0

1−σ

∫ + q−1/ 2
dx

−σ

0

∫ σ =
uΔt

Δx

€

q(x, t
0
) = q

1/ 2
+ Δ

1/ 2
q x −

1

2











n Piecewise constant n Piecewise linear

€

q(x, t
0
) = q

1/ 2

n Includes:
n Zone average

n Average slope

€

q
1/ 2

= q(x,t
0
)dx

0

1

∫

Δ1/2q ≡
∂q
∂x

#

$
%

&

'
(
1/2

Constant – why?

ATMS 502 - Spring 2019

Piecewise linear

3/7/19ATMS 502 - Spring 2019

23

� Van Leer piecewise linear: Scheme I

€

q
1/ 2 = q

1/ 2
−σ q

1/ 2
− q −1/ 2() −

σ

2
1−σ() Δ

1/ 2
q −Δ −1/ 2q()

Piecewise linear & beyond

3/7/19ATMS 502 - Spring 2019

24

� Van Leer piecewise linear: Scheme I

� How could we improve our method?
¡ 1. _________________________________

¡ 2. _________________________________

€

q
1/ 2 = q

1/ 2
−σ q

1/ 2
− q −1/ 2() −

σ

2
1−σ() Δ

1/ 2
q −Δ −1/ 2q()

€

q
1/ 2

= q(x,t
0
)dx

0

1

∫

Like piecewise-constant:
fluxes from zone averages.

slopes in zones.
- can be evaluated many ways.

scheme 1: centered differences

€

Δ
1/ 2

q =
1

2
q
3 / 2
− q −1/ 2()

C006: Finite difference approximations C040: Van Leer methods

