
Atms 502, CSE 566

Numerical Fluid Dynamics

Class 15 - Tue., Mar. 5, 2019
Image: Breaking waves around ship including spray 3/5/19ATMS 502 - Spring 2019

da
ac

.h
pc

.m
il/

ga
lle

ry
/

1

ATMS 502
CSE 566

Tuesday,
5 March 2019

Class #15

• Pgm3 due Thu Mar. 7

Plan for Today

� 1) Space differencing
¡ Differential-difference approach
¡ Phase speed & group velocity
¡ Impacts of higher order, added diffusion

� 2) Programming input/output
¡ C and Fortran considerations

� 3) Program 4: continued
¡ Nest placement / movement

� 4) Skamarock & Klemp
¡ Global/local refinement
¡ A full AMR method, explained

2

3/5/19ATMS 502 - Spring 2019

3/5/19ATMS 502 - Spring 2019

3

Space differencing

• Durran (2010) �3.3, p. 100+
• C008 – Truncation error
• C009 – Resolution
• C010 – AMR / nesting
• C051 – Nesting: grid placement, movement

Reference pages for this section:

Review: Poorly resolved waves

3/5/19ATMS 502 - Spring 2019

4

� Centered schemes preserve amplitude of Fourier
components, but dispersion yields numerical
dissipation in solution

� “Almost all finite different schemes fail to
propagate the 2∆x wave.

� Negative group velocities for 2∆x waves
� Higher accuracy does not help with poorly-

resolved waves.

Overview: Space differencing

3/5/19ATMS 502 - Spring 2019

5

� Task: Isolate just the spatial errors
¡ differential-difference equation

÷ leave time derivative: as a derivative
÷ apply differencing to spatial derivative
÷ insert complex exponential involving time
÷ simplify to obtain frequency

¡ computing phase speed
÷ frequency divided by wavenumber
÷ if phase speed depends on k: dispersive.

¢ if this was a linear, constant speed problem,
wavenumber dependence c(k) represents numerical error.

¡ compute group velocity
÷ derivative of frequency w.r.t. wavenumber

Space Differencing

3/5/19

6

� How to address space/time differencing separately?
¡ Space: differential-difference equations

÷ Wherein we say: what time differencing?
÷ Let’s look at just 2nd-order centered space

• no n+1,n… superscripts

÷ And we substitute a slightly different form:

÷ Key point: frequency w can still be complex!!
¢ Why is this important? (we’ll discuss this further, later)

€

du j

dt
+ c

u j+1 − u j−1

2Δx

 = 0

€

u j (t) = e
i kjΔx−ω2c t()

ATMS 502 - Spring 2019

Space Differencing

3/5/19ATMS 502 - Spring 2019

7

� Frequency eqn for 2nd-order ctr space

substitute:

� We get frequency equation:

� Is this dispersive? Yes. c(k) !
€

du j

dt
+ c

u j+1 − u j−1

2Δx

 = 0

€

u j (t) = e
i kjΔx−ω2c t()

€

−iω
2c
u = −

c

2Δx
e
ikΔx − e− ikΔx()u ⇒ ω =

c sinβ

Δx

c2c =
ω
k
=
csinβ
kΔx

; for small kΔx, c2c ≈ c 1− β
2

6
$

%
&

'

(
)

Real frequency: no
amplitude error.
See Durran
�3.3.1

Note b 0 case

Space Differencing

3/5/19ATMS 502 - Spring 2019

8

� Our expression for the phase speed:

¡ Lagging phase error. Note c2c(2∆x)=0!

� Group velocity:

¡ good for small b (long waves);
¡ terrible for small waves!! (why?)

€

c
2c

=
ω

k
=
c sinβ

kΔx
; for small kΔx, c

2c
≈ c 1−

β 2

6

€

cg2c =
∂ω

∂k
=
∂

∂k

c sinβ

Δx

 = c cosβ()

2nd vs. 4th order space diff.

3/5/19ATMS 502 - Spring 2019

9

� Summary: 2nd-order centered space differencing

� Phase speed (left), group velocity (right)
� Second order (solid), 4th order (dashed)
� 4th better at “intermediate” wavelengths

Durran figs. 3.3, 3.5

Numerical vs. true
phase speed “c”

Numerical vs. true
group velocity “c”

higher is better !

1st - 4th order space differencing
10

� Higher centered vs. odd-ordered schemes

1-sided 1st order vs.
centered 2nd,4th

One-sided 1st-order

Centered 2nd-order

One-sided 1st-order

Centered 2nd-order

Centered 4th-order

Durran fig. 3.6 Durran fig. 3.7

One-sided 3rd-order

1-sided 1st, 3rd order vs.
centered 2nd

3/5/19ATMS 502 - Spring 2019

Distortion of the solution

3/5/19ATMS 502 - Spring 2019

11

� “Centered schemes preserve
the amplitude of each individual
Fourier component, [but] the
various components propagate
at different speeds, and thus the
superposition of these
components ceases to properly
represent the true solution”

- Durran pp. 106-107
¡ With phase errors, wavelengths

interfere – causing amplitude errors

One-sided 1st-order

Centered 2nd-order

Centered 4th-order

Durran fig. 3.6

Group velocities

� “In the absence of dissipation the large negative
group velocities associated with the 2∆x wave
rapidly spread short wavelength noise away from
regions where 2∆x waves are forced.”

- Durran pp. 106-107

3/5/19ATMS 502 - Spring 2019

12

Cg < 0

Group velocities

3/5/19ATMS 502 - Spring 2019

13

� “The upstream propagation of the 2∆x wave [is
worse with 4th order than 2nd].

� “Switching to a higher-order scheme does not
improve the performance of finite-difference
methods when they are used to model poorly
resolved features like the spike … in many respects
the 4th-order solution is worse than the
2nd-order result.

- Durran pp. 106-107

Explicit Artificial Dissipation
14

� Added explicit damping can be beneficial

Without filtering, errors w/dispersion of poorly-resolved Fourier
components propagate without damping. Explicit diffusion
reduces amplitude of these short waves.

6th-derivative filter

Each case: 4th-ordered centered space differencing!

4th-derivative filter

Durran fig. 2.15 Durran fig. 2.16

3/5/19ATMS 502 - Spring 2019

Damping factor
for different order derivatives

Review: Added Dissipation

3/5/19ATMS 502 - Spring 2019

15

� No damping here; just deformational flow tests with 2nd

order (Lax-Wendroff) and 6th-order (Crowley) advection.

Higher order advection is
likely improving the larger-

scale features.

We would have to
scrutinize the figures
where the flow spirals

inward to be sure.

But notice the packing of contours at the top. This appears worse for 6th order, and probably represents greater
dispersion in the region of sharpest gradients, in the deformational flow near the top of each figure.

2nd order 6th order

T o l e a r n m o r e :
• w e b - s e a r c h f o r

• Linux I/O redirect
• [Fortran or C] I/O

• XML programming [Fortran or C]
• NetCDF example [Fortran or C] or go here

3/5/19ATMS 502 - Spring 2019

16

Programming input/output

https://www.unidata.ucar.edu/software/netcdf/examples/programs/

Linux I/O

3/5/19ATMS 502 - Spring 2019

� Three classes of I/O, and ways to redirect I/O:
¡ stdin: standard input

÷ Fortran: read*,nplot or read(5,*) nplot
÷ C: scanf(“%d”, &nplot);
÷ Linux shell: program < filename

¡ stdout: standard output
÷ Fortran: print*,nplot or write(6,*) nplot
÷ C: printf(“%d”, nplot);
÷ Linux shell: program > filename or program >> appendFile
÷ Linux shell, in+out: program < inputFile > outputFile

¡ stderr: standard error
÷ stderr: the other output stream ...
÷ this can also be redirected.
÷ the syntax depends on your command interpreter (shell).

¢ C-shell & tcsh: redirect both stdout, stderr with: program >& file
¢ Bash: redirect both stdout, stderr with: program > file 2>&1

17

A short script to run your program

3/5/19ATMS 502 - Spring 2019

18

� So are you tired of this yet?
¡ login2% pgm2

360
.075
5
y

� So much better to run your
program with the input
specified directly in a script.
¡ See example at right!

¡ Good resource to get answers to
your programming questions:

stackoverflow.com

� In a tcsh or bash script:
#!/bin/tcsh or #!/bin/bash
pgm2 << EOF
360
.075
5
y
1
...
EOF

� Don't forget to make the
script executable

chmod u+x myscript
¡ adds execute permission

for the user (you).

EOF is a common LINUX
abbreviation, short for "End
of File". Really any word
will work here!!

pgm2 << SickOfPgm2
...

SickOfPgm2

http://stackoverflow.com/

Fortran and C: read/write text to file

3/5/19ATMS 502 - Spring 2019

Fortran
� read from file directly:

open(1,file=‘filename’, &
status=‘old’)

read(1,*) nplot
read(1,*) morestuff
close(1)

� write to file directly:
open(1,file=‘newfile’, &

status=‘unknown’)
rewind(1)
write(1,*) nplot
close(1)

C
� read from file directly:

#include <stdio.h>
FILE *fp,*fopen();
fp=fopen(“filename”,”r”);
fscanf(fp,”%d”, &nplot);
fclose(fp);

� write to file directly:
#include <stdio.h>
FILE *fp,*fopen();
fp=fopen(“newfile”,”w”);
fprintf(fp,”%d”, nplot);
fclose(fp);

19

Fortran input via a namelist

3/5/19ATMS 502 - Spring 2019

� The code looks like:
namelist /namelist_name/ variable1, variable2, variable3 …
! … you still have to declare all these variable types!
open(1,file=‘namelist_filename’,status=‘old’)
read(1, NML=namelist_name)
close(1)

� The namelist file looks like:
&namelist_name
variable1 = -12.45,
variable2 = 73.123,
variable3 = .true.,
/

20

Reading and writing XML

3/5/19ATMS 502 - Spring 2019

� XML – eXtensible Markup Language
¡ designed to carry data.
¡ example at right

� For Fortran: not really supported, but try these:
¡ http://xml-fortran.sourceforge.net
¡ http://homepages.see.leeds.ac.uk/~earawa/FoX/
¡ https://www.sciencedirect.com/science/article/pii/S235271101630036X

� For C:
¡ Google “C xml parser library” : code.google.com/p/libroxml
¡ Gnome xml C parser, libxml : xmlsoft.org; also, wikipedia
¡ https://stackoverflow.com/questions/9387610/what-xml-

parser-should-i-use-in-c

<?xml version=“1.0”?>
<p5input>

<dt> 0.5</dt>
<dx>100</dx>

</p5input>

21

http://xml-fortran.sourceforge.net/
http://homepages.see.leeds.ac.uk/~earawa/FoX/
https://www.sciencedirect.com/science/article/pii/S235271101630036X
https://stackoverflow.com/questions/9387610/what-xml-parser-should-i-use-in-c

Reading and writing NetCDF

3/5/19ATMS 502 - Spring 2019

� NetCDF is a data format with C and Fortran APIs
¡ an API is an Application Program Interface

÷ "a set of routines, protocols and tools for building
software applications. An API specifies how
software components interact" - webopedia

� NetCDF data has your data but also metadata
¡ metadata is a set of data that describes and

gives information about other data (google)
¡ so your file could contain your array dimensions,

field names, field units, and of course the data itself.

� Learn more here:
¡ https://www.unidata.ucar.edu/software/netcdf/examples/programs/

22

http://www.webopedia.com/TERM/A/API.html
https://www.unidata.ucar.edu/software/netcdf/examples/programs/

N E S T P L A C E M E N T A L G O R I T H M

3/5/19ATMS 502 - Spring 2019

23

Program 4

Review: Nesting routines

3/5/19ATMS 502 - Spring 2019

24

Placing nest: grid-1 Nest values Moving nest

Feedback test
Result after I set

coarse grid to -1
everywhere, and
then did feedback.

coarse grid before coarse grid after

Determining the nest location (1)

3/5/19ATMS 502 - Spring 2019

25

� Compute the 2-D truncation error (T.E.)
¡ Done consistent with 1-D directional splitting; estimates T.E.

from the max of the absolute value in the X- and Y-directions
� Locating the nest (position on coarse grid)

¡ Set T.E. threshold as 50% of max T.E. over the 2-D T.E. array
¡ “Search” inward from left, right, top, bottom edges, noting the

I,J bounds at which you first find T.E. ≥ the threshold value.
¡ Nest center = integer, truncated value: (I1+I2)/2, (J1+J2)/2
¡ Nest size = (NX-1)/refinement_ratio
¡ NestX1 = Icenter-nestsize/2; NestX2 = NestX1 + nestsize
¡ NestY1 = Jcenter-nestsize/2; NestY2 = NestY1 + nestsize
¡ Check if nest runs off coarse grid edge; fix if so.

C008: Truncation error

Determining the nest location (2)

3/5/19ATMS 502 - Spring 2019

26

� Example of finding left,
right edges of T.E. region
¡ For each i column, left to

right … check TE(i,j) for all j
rows – determine max value

¡ Find first and last column (i)
for which max ≥ threshold.

� Do same for top/bottom.
� Average I1,I2,J1,J2 for

nest center. Nest edges
depend on nest size.

I1 I2

Cartoon of T.E. on coarse grid.

i

j

A D A P T I V E M E S H R E F I N E M E N T PA P E R

3/5/19ATMS 502 - Spring 2019

27

Skamarock & Klemp

Nesting strategy

3/5/19ATMS 502 - Spring 2019

28

� Identification
¡ grid points exceeding

some threshold, e.g.
truncation error

� Clustering
¡ fit to enclose points
¡ general AMR allows

overlapping grids,
arbitrary orientation

� Nest: Initial conditions
¡ Interpolated from coarse

grid, or existing nests

� Nest: Bound. conditions
¡ Time dependent

÷ from coarse grid, using
current and ‘next’ step.

¡ Spatial dependence
÷ interpolated from coarse grid.

in our case, nest BC overlap
with coarse points

n Feedback: nest to coarse grid
n Average nest interior to coarse points

Skamarock and Klemp

C050: Nest boundary conditions • C051: Grid refinement strategy

Results: 2D outflow problem

Fixed: ∆x = 300m Fixed: ∆x = 33m

One nest: 300/100 m Two nests: 300/100/33 m

100
100

33

33

3/5/19

29

ATMS 502 - Spring 2019

Skamarock and Klemp

A019: Density currents • C009: Resolution • C051: Grid refinement strategy

How much refinement?

3/5/19ATMS 502 - Spring 2019

30

� Their AMR is a local refinement method!
¡ efficiency reduced as larger area refined (AMR has a cost)
¡ break-even: 50-60% of coarse grid refined (= max to refine)
¡ if you need to refine a bigger area: just refine entire grid

Skamarock and Klemp

C009: Resolution • C010: Adaptive mesh refinement • C051: Grid refinement strategy

BC noise, spurious waves

� Fixed resolution run
shown (top)

� Nested solution
shown (bottom)

� Inner nested grid
∆x = 28.7m

� This is not physical
!!!

(4b)

(5c)

∆x=28.7, fixed

nested; ∆x=28.7 on inner grid

3/5/19

Skamarock and Klemp

C010: Adaptive mesh refinementATMS 502 - Spring 2019

31

Parameterization, convergence
32

� Parameterization of physical processes
¡ this refers to treatment of a sub-grid process using information

on larger scales
¡ common practice
¡ may affect convergence!

� Truncation error vs. grid size
¡ did not decrease as expected with improved resolution –

error sometimes increased!
÷ as a consequence of grid-scale-dependent parameterizations

¡ smaller ∆x => smaller-scale features!!

Skamarock and Klemp

C009: Resolution • C011: Convergence • C053: Parameterization of processes 3/5/19ATMS 502 - Spring 2019

