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Numerical Fluid Dynamics
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https://www.tacc.utexas.edu/scientific-visualization-gallery


ATMS 502
CSE 566

Tuesday,
26 February 2019

Class #13

• Pgm3 due Mar. 5

Plan for Today

� 1) Approximating derivatives
¡ Back to Taylor series

� 2) Time differencing; Leapfrog
¡ Computational molecule 
¡ Leapfrog method • stability analysis

� 3) Nesting, continued
¡ Boundary conditions
¡ 1-D view: interpolation, feedback
¡ Grid refinement & clustering
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Handouts:
• Skamarock & Klemp – AMR
• Skamarock – KE spectra & resolution



• We have used Taylor  seri es  
for  t runcat i on error. . .

• We can use  t he  sam e seri es  t o  
deri ve approxim at i ons  for  
deri vat i ves
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Approximating derivatives



Approximations to derivatives 
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� Consider the first derivative in space -

€ 

ux( )
j
=
u j+1

− u j

Δx
 ; ux( )

j
=
u j − u j−1

Δx
 ; ux( )

j
=
u j+1

− u j−1

2Δx

O(∆x) O(∆x) O(∆x2)

€ 

ux( )
j

=
4

3

u j+1 − u j−1

2Δx

 

 
 

 

 
 −
1

3

u j+2 − u j−2

4Δx

 

 
 

 

 
 

O(∆x4)

• Why not use higher-order approximations?
• When would you need 1-sided approximations?

Follow
ing W

ilhelm
son



Approximating derivatives: Example
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� Example: centered 1st derivative
¡ Let:

¡ Insert Taylor series expansion; get 3 equations, 3 unknowns …

¡ Result:

€ 

df

dx
= fx = af (x −Δx) + bf (x) + cf (x + Δx)[ ]

€ 

df

dx
= (a + b + c) f (x) +  (c − a)Δxfx +  (a + c)

Δx
2

2!
fxx

€ 

a = −1/2Δx,  b = 0, c =1/2Δx ∴  ′ f (x) ≈
f (x + Δx) − f (x −Δx)

2Δx



S O M E  N O T A T I O N  A N D  B A S I C  I D E A S .
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Time differencing overview

C032:  Operator notation for finite differences



Time differencing; computational diagrams

2/26/19

€ 

s j
n+1
− s j

n

Δt
+ c

s j+1
n
− s j−1

n

2Δx
= 0

€ 

s j
n+1
− s j

n

Δt
+ c

s j+1
n+1
− s j−1

n+1

2Δx
= 0

€ 

s j
n+1
− s j

n−1

2Δt
+ c

s j+1
n
− s j−1

n

2Δx
= 0

a)

b)

c)

Fwd time,
ctr space

Back time,
ctr space

Ctr time,
ctr space

t

x
Wilhelmson
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One-sided X difference: ____
Centered X difference:   ____
Two time levels:  ___________ Explicit scheme:  _________
Three time levels: __________ Implicit scheme:  _________

Computational molecule

C002: Explicit methods; C003: Time levels; C004: Numerical stencil



A  3 - T I M E - L E V E L  S C H E M E
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The leap frog method

C052: Advection methods

• C003 – time levels
• C004 – numerical stencil
• C018 – complex numbers
• C020 – von Neumann analysis
• C052 – advection methods
• C054 – time differencing

• C055 – computational modes
• C056 – systems of linear equations
• C057 – eigenvalue problems
• C058 – characteristic equation
• C059 – time filtering

Reference pages for this section:



Leapfrog

n The Leap Frog method gets its name due to 
the way it makes use of data among 3 time 
levels.

2/26/19

9
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Leapfrog
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� Leap frog method:

� Computational molecule

� Time levels
¡ evaluate space derivative at time n.  Store n,n-1 time levels.

n-1

n

n+1

j-1 j j+1

€ 

u j

n+1
− u j

n−1

2Δt
= −c

u j+1

n
− u j−1

n

2Δx

3-time-level scheme

C003: Time levels • C004:  Numerical stencil• C054: Time differencing



Leapfrog - application
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� Because Leapfrog has 3 time levels …
¡ Considerations:

÷ Need “help” to get started: u2 = f(u1)
÷ The first time step uses a 2-time-level method

� Applying: 
¡ u3(j) = u1(j) - n*(u2(j+1)-u2(j-1))
¡ Update: copy u2 to u1; copy u3 to u2
¡ u2 now contains latest results.  Repeat.

C003: Time levels • C054: Time differencing



Leapfrog - overview
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� Leap frog method:

� Accuracy
¡ Leapfrog is consistent and accurate

of order O[ (∆t)2, (∆x)2 ].
¡ There is considerable phase error.

� Stability
¡ Leapfrog is stable for |n| ≤ 1

� Modes
¡ There are two solutions from Leapfrog

÷ These are the physical and computational modes
÷ Results from the additional time level (higher accuracy in time)
÷ A major drawback!  Solution = sum of modes; comp. mode undamped

€ 

u j

n+1
− u j

n−1

2Δt
= −c

u j+1

n
− u j−1

n

2Δx

€ 

u
t
+ cu

x
= −

(Δt)
2

3!
u
ttt
− c
(Δx)

2

3!
u
xxx

+ ...

C052: Advection methods • C055: Computational modes



Leapfrog - stability
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� Leap frog method:

� Start out with usual Von Neumann method:

� Introduce new variable - “looks” 2-time-level:

€ 

u j

n+1 = u j

n−1
−µ u j+1

n
− u j−1

n( )

€ 

˜ u 
n +1 = ˜ u 

n−1
−µ ˜ u 

n
e

ikΔx
− e

− ikΔx( )

€ 

Let ˜ v 
n = ˜ u 

n−1
,  so ˜ v 

n +1 = ˜ u 
n
,  and we have :

    ˜ u 
n +1 = ˜ v 

n −µ ˜ u 
n

2isinβ( )

    ˜ v 
n +1 = ˜ u 

n

C020: von Neumann stability analysis



Leapfrog – stability (2)
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� We introduced a new variable v --

� Now write in matrix form.
€ 

Let ˜ v 
n = ˜ u 

n−1
,  so ˜ v 

n +1 = ˜ u 
n
,  and we have :

    ˜ u 
n +1 = ˜ v 

n −µ ˜ u 
n

2isinβ( )

    ˜ v 
n +1 = ˜ u 

n
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1 0
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Leapfrog stability (3)
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� Linear algebra: y=Ax, Ax=lx, (A-lI)x=0.
¡ We were here:

¡ For a nontrivial solution, the 
characteristic determinant det(A-lI)=0:

¡ (1) is the characteristic equation corresponding to our matrix (A).  

€ 

˜ u 
n +1

˜ v 
n +1

 

 
 

 

 
 =

−2iµsinβ 1

1 0

 

 
 

 

 
 

˜ u 
n

˜ v 
n

 

 
 

 

 
 

€ 

−2iµsinβ − λ 1

1 0 − λ
= 0 (1)

C056: Systems of linear equations • C057: Eigenvalue problems • C058: Characteristic equation



Leapfrog stability (4)
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� Characteristic equation:

� Solve:

� Two roots: things are getting interesting.

¡ If the square root is real, |l|2=1 and |µ|≤1.
¡ If the square root is imaginary, |l|>1.
¡ Our stability condition is: |µ|≤1

€ 

−2iµsinβ − λ 1

1 0 − λ
= 0

€ 

λ2 + 2iµsinβλ −1= 0

€ 

λ = −iµsinβ ± 1−µ2
sin

2 β = −ip± 1− p2 No amplification 
error!

C056: Systems of linear equations • C057: Eigenvalue problems • C058: Characteristic equation



Leapfrog - modes

2/26/19ATMS 502 - Spring 2019

17

� We have two modes to the solution.
¡ This comes from the ± below.

¡ One is real (physical).  One is computational.

€ 

λ = −iµsinβ ± 1−µ2
sin

2 β



Leapfrog - modes
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� We have two modes to the solution.
¡ This comes from the ± below.

¡ One is real (physical).  One is computational.
¡ To find out which is which, take ∆t,∆x     0.

÷ Then µ goes to 0; one root goes to +1, one to -1.
÷ Root of +1 is physical; no growth, all is well.
÷ Root of -1: switches sign every time step (ln).

¡ This is a not-so-good consequence
of our 3-time-level numerical scheme.

€ 

λ = −iµsinβ ± 1−µ2
sin

2 β

C055: Computational modes



Leapfrog stability - review
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� We rewrote the 3-level scheme as 2-level:

� Write above as matrix, subtract l from diagonal, set
determinant to zero.  Characteristic equation:

� Solve; 2 roots; physical and computational modes

� As ∆t and p Þ0: ”+” root approaches 1, “-” root: -1
¡ |l|=-1 means amplitude varies as (-1)n

€ 

˜ u 
n +1 = ˜ v 

n −µ ˜ u 
n

2isinβ( )

˜ v 
n +1 = ˜ u 

n

 
 
 

  
  so  

˜ u 
n +1
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1 0
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€ 

−2iµsinβ − λ 1

1 0 − λ
= 0

€ 

λ = −iµsinβ ± 1−µ2
sin

2 β = −ip± 1− p2
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Nesting



Nested grid BCs
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� Nested grid:
¡ Shown below:  grid-1 time step, q1 to q2
¡ Added: nested grid step, refinement factor

Grid 2 t+∆t

2

nest t+∆t/2

Time-interpolated
boundary conditions

Grid 2 t+∆t/2

Nested grid step #2

BC BC

∆t/2
€ 

q1grid 2 = (1− F)q1grid1 + F •q2grid1

where  F =
nstepgrid 2 −1( )
# stepsgrid 2



Interpolation
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� Interpolation: coarse Þ nested

J=4 5 6 7 8 9 10 11 12 36 37

J=1 5 9 13 17 21 25 121

//

Nested grid size … example

§ nx=121 (both coarse and nested grids)
§ nested grid is 121 nest points wide, and
§ nested grid is (121-1)/4=30 coarse points wide



Interpolation
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� Interpolation: coarse Þ nested

Nested grids: Interpolation

a bx

€ 

f (x) = f (a) + f (b) − f (a)[ ]
x − a

b − a

 

 
 

 

 
 

J=4 5 6 7 8 9 10 11 12 36 37

J=1 5 9 13 17 21 25 121

//



Interpolation
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� Interpolation: coarse Þ nested

Nested grids: Interpolation

a bx

€ 

f (x) = f (a) + f (b) − f (a)[ ]
x − a

b − a

 

 
 

 

 
 

nest(inest) = coarse(icoarse) +
( coarse(icoarse+1)-coarse(icoarse) )*fraction



Interpolation
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� Interpolation: coarse Þ nested

Nested grids: Coordinates

§ Example above: nested grid index j=1
… is at coarse grid index j=6.

§ icoarse = (inest-1)/ratio + first.nest.point

J=4 5 6 7 8 9 10 11 12 36 37

J=1 5 9 13 17 21 25 121

//



Interpolation
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� Interpolation: old vs. new nested grids

§ Nested grid re-location:
ü interpolate from coarse Þ new nested grid
ü copy overlap region of old nest to new nest

Old
nest

new
nest

This example:
3:1 nesting



Interpolation
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How often should we relocate the nest?
� As often as possible?

¡ Minimizes copying coarse data Þ nest
¡ This is more computationally expensive

÷ Imagine computing the truncation errors over a larger 2d domain, 
frequently

� As rarely as possible?
¡ Eventually features of interest leave the nest
¡ Much of new nest would then

be copied from coarse grid



Feedback
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� Feedback: copy nested Þ coarse

Updating the coarse grid 

§ We require every 4th nest point to overlap a coarse point
§ In feedback, every 4th interior nested grid point is

copied back to the coarse grid.
§ What alternate approach might we consider ??

J=4 5 6 7 8 9 10 11 12 36 37

J=1 5 9 13 17 21 25 121

//



A D A P T I V E  M E S H  R E F I N E M E N T
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Grid refinement & Clustering

• C008 – Truncation error
• C009 – Resolution
• C010 – AMR / nesting
• C051 – Nesting: grid placement, movement

Reference pages for this section:



Regridding procedure

2/26/19ATMS 502 - Spring 2019

30

� Regridding (Skamarock dissertation, pp. 12-13)
¡ 1) flag points needing refinement

÷ flagged if estimated error exceeds user threshold
¡ 2) cluster the flagged points – for two reasons

÷ a) separates “spatially distinct phenomena [like] shocks or fronts”
÷ b) subdivide to use several grids instead of one large region

¡ 3) fit rectangular grids around the clustered points
¡ 4) repeat steps 2,3, using different methods if necessary

÷ simple method [nearest neighbor] – ok for clustering, not rectangles
÷ connecting points – use minimum spanning trees or

nearest neighbor graphs
¡ clustering, fitting rectangles “most difficult part of regridding”



Regridding / clustering
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Optimal grid size, number, locations
“Adaptive mesh refinement routines for Overture” -
William Henshaw, 2011 (link)

http://www.overtureframework.org/documentation/amr.pdf


Regridding / clustering

Optimal grid size, number, locations
2/26/19ATMS 502 - Spring 2019
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“Adaptive mesh refinement routines for Overture” -
William Henshaw, 2011 (link)

http://www.overtureframework.org/documentation/amr.pdf

