JISTA UMM PaZI[ensia urewop 05x00S1x00St

DOV ‘WeIqy 3915 pue sso 3915 Aq UONJRZI[BNSIA
BUWOYRPO JO ANSIDAIU() - WISAODHIA AWy pue [ye AuepLIg Aq 90UdI0S

UWLIO}SIIPUNY] [[9213dNS B Ul AJIILIOA ISIMUWBIIIS

https://www.tacc.utexas.edu/scientific-visualization-gallery

Plan for Today

ATMS 502
CSE 566 e 1) Approximating derivatives

o Back to Taylor series

Tuesday, . ‘ . .
26 February 2019 2) Time differencing; Leapfrog

o Computational molecule
Class #13 o Leapfrog method e stability analysis

e 3) Nesting, continued
o Boundary conditions
o 1-D view: interpolation, feedback
o Grid refinement & clustering

* Pgm3 due Mar.

HANDOUTS:
+ SKAMAROCK & KLEMP — AMR
+ SKAMAROCK — KE SPECTRA & RESOLUTION

Approximating derivatives

Consider the first derivative in space -

u..,.—Uu. u.—u. u. —u.
{(ux)j _ j+l Jj , (ux) = Jj j-1 , (ux) = j+l]—1}
Ax ! Ax J 2Ax
O (AX) O (AX) O(AX3)
(u) =£ Ui — U, _l Uiy —U;_»
3 2Ax 3 4Ax

O(AX?)

uoswyayjim buimojjo4

* Why not use higher-order approximations?
* When would you need 1-sided approximations?

ATMS 502 - Spring 2019 2/26/19

Example: centered 15t derivative

Let: df
{— f.= [af(x—Ax)+bf(x)+cf(x+Ax)]J

Insert Taylor series expansion; get 3 equations, 3 unknowns ...

{Z—f—(a+b+c)f(x) + (c —a)Axf, +(a+c)AX2fJ

X

Result:

f(X+AX)—f(x—AX)J

a=—1/2Ax,b=0,c=1/2Ax ... f'(x) =
[iy L9

ATMS 502 - Spring 2019 2/26/19

Time differencing overview

j+l1

n+l n n+l n+l

)| > NI Y S

Computational molecule

Fwd time, Back time,
ctr space ctr space

Ctr time,
ctr space

(a)

(b) (c)

S. -5 \Y

c) J I 4+c Jj+l Jj-1

| 2A 2Ax

’e

B

One-sided X difference:
Centered X difference:
Two time levels:

| "

X—>

Three time levels:

ATMS 502 - Spring 2019

Explicit scheme:
Implicit scheme:

Wilhelmson

C002: Explicit methods; C003: Time levels; CO04: Numerical stencil

2/26/19

The leap frog method

A 3-TIME-LEVEL SCHEME

Reference pages for this section:

* CO03 —time levels « C055 — computational modes

» C004 — numerical stencil « C056 — systems of linear equations
* C018 — complex numbers « CO57 — eigenvalue problems

» C020 — von Neumann analysis « C058 — characteristic equation

» C052 — advection methods » C059 - time filtering

» C054 - time differencing

ATMS 502 - Spring 2019 C052: Advection methods 2/26/19

= The Leap Frog method gets its name due to
the way it makes use of data among 3 time
levels.

o
O o

ATMS 502 - Spring 2019 2/26/19

L
’
Leap frog method:
TS T i, —ul 3-TIME-LEVEL SCHEME
=—C
QA1 2Ax

Computational molecule

n+1 +l

n O O
n-1 1?
1 j J+1

Time levels
evaluate space derivative at time n. Store n,n-1 time levels.

ATMS 502 - Spring 2019 C003: Time levels ®* C004: Numerical stencil* C054: Time differencing 2/26/19

Because Leapfrog has 3 time levels ...

Considerations:
Need “help” to get started: uz = f(u1)
The first time step uses a 2-time-level method

Applying:
u3(j) = u1(j) - v¥(u2(j+1)-u2(j-1))
Update: copy u2 to ui; copy ug to u2
u2 now contains latest results. Repeat.

ATMS 502 - Spring 2019 C003: Time levels * C054: Time differencing 2/26/19

» Leap frog method: {u".” —u"! Wi, —u. }

» Accuracy

Leapfrog is consistent and accurate
of order O (At)?, (Ax)?].

. . 2 2
There is considerable phase error. [ut Fou =— @AD" . (Ax') U+ }

u
3! 1t
» Stability
Leapfrog is stable for |v| <1

» Modes
There are two solutions from Leapfrog
These are the physical and computational modes
Results from the additional time level (higher accuracy in time)
A major drawback! Solution = sum of modes; comp. mode undamped

ATMS 502 - Spring 2019 C052: Advection methods * C055: Computational modes 2/26/19

Leap frog method:
[u?”— T p(w, - ’}1)]

Start out with usual Von Neumann method:
[ann _ ! _Man(eikm _e—ikAx)J

Introduce new variable - “looks” 2-time-level:

~n+1 ~
(Let 7" ,so0v"" =u", and we have -
~n+l ~ ~ .
u'"t =v —Mu”(2zsm[3’)
~n+l1 ~
\ vl’l+ — ul’l /

ATMS 502 - Spring 2019 C020: von Neumann stability analysis 2/26/19

We introduced a new variable v --

~n+1 ~
(Let " ,sov"" =u", and we have ©
~n+l ~ ~ . .
u'"t =v —uu”(Zzsm[g’)
~n+1 ~
\ vl’l+ — Ml’l /

Now write 1n matrix form.

~n+l

v

~n+l

v

itn+1 \7” _ Mﬁn(zlSIDﬁ)} (ﬁnﬂ
SO

l’;'tl’l

A

2iusinf3

ATMS 502 - Spring 2019

2/26/19

Leapfrog stability (3)

"'\ (-2iusinB 1
‘~)n+1 B 1 v

=2iusinff — A

» Characteristic equation:
- =2iusinf-A 1
R 0-A

» Solve:

[X+ 2iusin/3)»—1=0}

» Two roots: things are getting interesting.

[)» = —jusinf = \/1 —u’sin® B =—ip x4/l - sz NO AMPLIFICATION

If the square root is real, |A|2=1 mmsl/

If the square root is imaginary, |A|>1.
Our stability condition is: |p|<1

ATMS 502 - Spring 2019 C056: Systems of linear equations * C057: Eigenvalue problems ¢ C058: Characteristic equation ~ 2/26/19

Leapfrog - modes

A = —iusin BEn/1- u’sin’ B

Leapirog - modes

e We have two modes to the solution.
o This comes from the + below.

A= —iusin[)’@\/l —u’sin’ B]

O One is real (physical). One is computational.

o To find out which is which, take At,Ax— 0.

« Then p goes to 0; one root goes to +1, one to -1.
« Root of +1 is physical; no growth, all is well.

« Root of -1: switches sign every time step (A").

o This is a not-so-good consequence
of our 3-time-level numerical scheme.

We rewrote the 3-level scheme as 2-level:

u"' =9" - un"(2isinB) "'\ (2iusinp 1\ &"
Yo) =

‘7”+1 l':tn ‘7”"‘1 1 O ‘7’7

Write above as matrix, subtract | from diagonal, set
determinant to zero. Characteristic equation:

=2iusinf-A 1
1 0-A

Solve; 2 roots; physical and computational modes

[A=—-iusinf + \/l—uz sin” B =-ip + w/l—p2]

€ »

As At and p =0: ”+” root approaches 1, “-” root: -1
|A|=-1 means amplitude varies as (-1)»

ATMS 502 - Spring 2019 2/26/19

Nesting

Nested grid BCs

q1grid2 =(1- F)qlgridl +Fe q2grid1

(nsrepgridZ -]‘)
Stepsgrid 2

Time-interpolated
boundary conditions

where F =

Interpolation

» Interpolation: coarse = nested

6 7 8 9 10 11 12 36
J=1 5 9 13 17 21 25 121
NESTED GRID SIZE ... EXAMPLE
» nx=121 (both coarse and nested grids)

» nested grid is 121 nest points wide, and
» nested grid is (121-1)/4=30 coarse points wide

J=4 5 37

2/26/19

ATMS 502 - Spring 2019

» Interpolation: coarse = nested

6 7 8 9 10 11 12 36
J=1 5 9 13 17 21 25 121
NESTED GRIDS: INTERPOLATION

—20 | f(0)=f(@)+[f)-f <a>](z: Z)

J=4 5 37

ATMS 502 - Spring 2019 2/26/19

Interpolation: coarse = nested

NESTED GRIDS: INTERPOLATION

S {f(x) - f(@+[f ()~ f(a)](z :Zﬂ

nest(inest) = coarse(icoarse) +
(coarse(icoarse+1)-coarse(icoarse))*fraction

ATMS 502 - Spring 2019 2/26/19

» Interpolation: coarse = nested
6 7 8 9 10 11 12 36
J=1 5 9 13 17 21 25 121

NESTED GRIDS: COORDINATES

Example above: nested grid index j=1
... Is at coarse grid index y=6

= jcoarse = (inest-1)/ratio + first.nest.point

J=4 5 37

ATMS 502 - Spring 2019 2/26/19

Interpolation

» Interpolation: old vs. new nested grids

oo MMM e conne
- MMM e

., M
<t ANNARARARANRAE

* Nested grid re-location:
v interpolate from coarse = new nested grid
v’ copy overlap region of old nest to new nest

ATMS 502 - Spring 2019 2/26/19

Interpolation

How often should we relocate the nest?

 As often as possible?
Minimizes copying coarse data = nest

This is more computationally expensive

Imagine computing the truncation errors over a larger 2d domain,
frequently

 As rarely as possible?

Eventually features of interest leave the nest

Much of new nest would then
be copied from coarse grid

ATMS 502 - Spring 2019 2/26/19

o Feedback: copy nested = coarse

J=4 5 1

6 7 8 9 0 11 12 36
J=1 3 9 13 17 21 25 121

37

UPDATING THE COARSE GRID
We require every 4t nest point to overlap a coarse point
In feedback, every 4" jnterior nested grid point is
copied back to the coarse grid.
What alternate approach might we consider ??

ATMS 502 - Spring 2019 2/26/19

Grid refinement & Clustering

* Regridding (Skamarock dissertation, pp. 12-13)

1) flag points needing refinement
flagged if estimated error exceeds user threshold

2) cluster the flagged points — for two reasons
a) separates “spatially distinct phenomena [like] shocks or fronts”
b) subdivide to use several grids instead of one large region

3) fit rectangular grids around the clustered points

4) repeat steps 2,3, using different methods if necessary
simple method [nearest neighbor] — ok for clustering, not rectangles

connecting points — use minimum spanning trees or
nearest neighbor graphs

clustering, fitting rectangles “most difficult part of regridding”

ATMS 502 - Spring 2019 2/26/19

Regridding / clustering

Box is split into 2

o0
000 000
00 00
L 2K J ® e
® 00 ® 00
e &) ® e 0o
o/ :

Tagged points Initial box Process is repeated on the

two new boxes

L L]

Number of points in each column

Figure 2: The 3 basic steps in regridding are (1) tag error cells and enclose in a box, (2) split the box into
2 based on a histogram of the column or row sums pf tagged cells, (3) fit new boxes to each split box and
repeat if the ratio of tagged to untagged cells is too small.

“Adaptive mesh refinement routines for Overture” -

i biemeity 200 (0] Optimal grid size, number, locations

http://www.overtureframework.org/documentation/amr.pdf

Regridding / clustering

http://www.overtureframework.org/documentation/amr.pdf

