
2/26/19

Atms 502, CSE 566
Numerical Fluid Dynamics

Tue., Feb. 26, 2019

St
re

am
w

is
e

vo
rt

ic
it

y
in

 a
 s

up
er

ce
ll

th
un

de
rs

to
rm

ATMS 502 - Spring 2019 1

Sc
ie

nc
e

by
 B

ri
tta

ny
 D

ah
l a

nd
 A

m
y

M
cG

ov
er

n
-U

ni
ve

rs
ity

 o
f O

kl
ah

om
a

Vi
su

al
iz

at
io

n
by

 G
re

g
Fo

ss
 a

nd
 G

re
g

Ab
ra

m
, T

AC
C

15
00

x1
50

0x
50

 d
om

ai
n

vi
su

al
iz

ed
 w

ith
 V

is
It

ht
tp

s:
//

w
w

w
.t

ac
c.

ut
ex

as
.e

du
/s

ci
en

ti
fi

c-
vi

su
al

iz
at

io
n-

ga
lle

ry
#

st
re

am
w

is
e-

vo
rt

ic
it

y-
in

-a
-s

up
er

ce
ll-

th
un

de
rs

to
rm

https://www.tacc.utexas.edu/scientific-visualization-gallery

ATMS 502
CSE 566

Tuesday,
26 February 2019

Class #13

• Pgm3 due Mar. 5

Plan for Today

� 1) Approximating derivatives
¡ Back to Taylor series

� 2) Time differencing; Leapfrog
¡ Computational molecule
¡ Leapfrog method • stability analysis

� 3) Nesting, continued
¡ Boundary conditions
¡ 1-D view: interpolation, feedback
¡ Grid refinement & clustering

2

2/26/19ATMS 502 - Spring 2019

Handouts:
• Skamarock & Klemp – AMR
• Skamarock – KE spectra & resolution

• We have used Taylor seri es
for t runcat i on error. . .

• We can use t he sam e seri es t o
deri ve approxim at i ons for
deri vat i ves

2/26/19ATMS 502 - Spring 2019

3

Approximating derivatives

Approximations to derivatives

2/26/19ATMS 502 - Spring 2019

4

� Consider the first derivative in space -

€

ux()
j
=
u j+1

− u j

Δx
 ; ux()

j
=
u j − u j−1

Δx
 ; ux()

j
=
u j+1

− u j−1

2Δx

O(∆x) O(∆x) O(∆x2)

€

ux()
j

=
4

3

u j+1 − u j−1

2Δx

 −
1

3

u j+2 − u j−2

4Δx

O(∆x4)

• Why not use higher-order approximations?
• When would you need 1-sided approximations?

Follow
ing W

ilhelm
son

Approximating derivatives: Example

2/26/19ATMS 502 - Spring 2019

5

� Example: centered 1st derivative
¡ Let:

¡ Insert Taylor series expansion; get 3 equations, 3 unknowns …

¡ Result:

€

df

dx
= fx = af (x −Δx) + bf (x) + cf (x + Δx)[]

€

df

dx
= (a + b + c) f (x) + (c − a)Δxfx + (a + c)

Δx
2

2!
fxx

€

a = −1/2Δx, b = 0, c =1/2Δx ∴ ′ f (x) ≈
f (x + Δx) − f (x −Δx)

2Δx

S O M E N O T A T I O N A N D B A S I C I D E A S .

2/26/19ATMS 502 - Spring 2019

6

Time differencing overview

C032: Operator notation for finite differences

Time differencing; computational diagrams

2/26/19

€

s j
n+1
− s j

n

Δt
+ c

s j+1
n
− s j−1

n

2Δx
= 0

€

s j
n+1
− s j

n

Δt
+ c

s j+1
n+1
− s j−1

n+1

2Δx
= 0

€

s j
n+1
− s j

n−1

2Δt
+ c

s j+1
n
− s j−1

n

2Δx
= 0

a)

b)

c)

Fwd time,
ctr space

Back time,
ctr space

Ctr time,
ctr space

t

x
Wilhelmson

ATMS 502 - Spring 2019

7

One-sided X difference: ____
Centered X difference: ____
Two time levels: ___________ Explicit scheme: _________
Three time levels: __________ Implicit scheme: _________

Computational molecule

C002: Explicit methods; C003: Time levels; C004: Numerical stencil

A 3 - T I M E - L E V E L S C H E M E

2/26/19ATMS 502 - Spring 2019

8

The leap frog method

C052: Advection methods

• C003 – time levels
• C004 – numerical stencil
• C018 – complex numbers
• C020 – von Neumann analysis
• C052 – advection methods
• C054 – time differencing

• C055 – computational modes
• C056 – systems of linear equations
• C057 – eigenvalue problems
• C058 – characteristic equation
• C059 – time filtering

Reference pages for this section:

Leapfrog

n The Leap Frog method gets its name due to
the way it makes use of data among 3 time
levels.

2/26/19

9

ATMS 502 - Spring 2019

Leapfrog

2/26/19ATMS 502 - Spring 2019

10

� Leap frog method:

� Computational molecule

� Time levels
¡ evaluate space derivative at time n. Store n,n-1 time levels.

n-1

n

n+1

j-1 j j+1

€

u j

n+1
− u j

n−1

2Δt
= −c

u j+1

n
− u j−1

n

2Δx

3-time-level scheme

C003: Time levels • C004: Numerical stencil• C054: Time differencing

Leapfrog - application

2/26/19ATMS 502 - Spring 2019

11

� Because Leapfrog has 3 time levels …
¡ Considerations:

÷ Need “help” to get started: u2 = f(u1)
÷ The first time step uses a 2-time-level method

� Applying:
¡ u3(j) = u1(j) - n*(u2(j+1)-u2(j-1))
¡ Update: copy u2 to u1; copy u3 to u2
¡ u2 now contains latest results. Repeat.

C003: Time levels • C054: Time differencing

Leapfrog - overview

2/26/19ATMS 502 - Spring 2019

12

� Leap frog method:

� Accuracy
¡ Leapfrog is consistent and accurate

of order O[(∆t)2, (∆x)2].
¡ There is considerable phase error.

� Stability
¡ Leapfrog is stable for |n| ≤ 1

� Modes
¡ There are two solutions from Leapfrog

÷ These are the physical and computational modes
÷ Results from the additional time level (higher accuracy in time)
÷ A major drawback! Solution = sum of modes; comp. mode undamped

€

u j

n+1
− u j

n−1

2Δt
= −c

u j+1

n
− u j−1

n

2Δx

€

u
t
+ cu

x
= −

(Δt)
2

3!
u
ttt
− c
(Δx)

2

3!
u
xxx

+ ...

C052: Advection methods • C055: Computational modes

Leapfrog - stability

2/26/19ATMS 502 - Spring 2019

13

� Leap frog method:

� Start out with usual Von Neumann method:

� Introduce new variable - “looks” 2-time-level:

€

u j

n+1 = u j

n−1
−µ u j+1

n
− u j−1

n()

€

˜ u
n +1 = ˜ u

n−1
−µ ˜ u

n
e

ikΔx
− e

− ikΔx()

€

Let ˜ v
n = ˜ u

n−1
, so ˜ v

n +1 = ˜ u
n
, and we have :

 ˜ u
n +1 = ˜ v

n −µ ˜ u
n

2isinβ()

 ˜ v
n +1 = ˜ u

n

C020: von Neumann stability analysis

Leapfrog – stability (2)

2/26/19ATMS 502 - Spring 2019

14

� We introduced a new variable v --

� Now write in matrix form.
€

Let ˜ v
n = ˜ u

n−1
, so ˜ v

n +1 = ˜ u
n
, and we have :

 ˜ u
n +1 = ˜ v

n −µ ˜ u
n

2isinβ()

 ˜ v
n +1 = ˜ u

n

€

˜ u
n +1 = ˜ v

n −µ ˜ u
n

2isinβ()

˜ v
n +1 = ˜ u

n

 so

˜ u
n +1

˜ v
n +1

 =

−2iµsinβ 1

1 0

˜ u
n

˜ v
n

Leapfrog stability (3)

2/26/19ATMS 502 - Spring 2019

15

� Linear algebra: y=Ax, Ax=lx, (A-lI)x=0.
¡ We were here:

¡ For a nontrivial solution, the
characteristic determinant det(A-lI)=0:

¡ (1) is the characteristic equation corresponding to our matrix (A).

€

˜ u
n +1

˜ v
n +1

 =

−2iµsinβ 1

1 0

˜ u
n

˜ v
n

€

−2iµsinβ − λ 1

1 0 − λ
= 0 (1)

C056: Systems of linear equations • C057: Eigenvalue problems • C058: Characteristic equation

Leapfrog stability (4)

2/26/19ATMS 502 - Spring 2019

16

� Characteristic equation:

� Solve:

� Two roots: things are getting interesting.

¡ If the square root is real, |l|2=1 and |µ|≤1.
¡ If the square root is imaginary, |l|>1.
¡ Our stability condition is: |µ|≤1

€

−2iµsinβ − λ 1

1 0 − λ
= 0

€

λ2 + 2iµsinβλ −1= 0

€

λ = −iµsinβ ± 1−µ2
sin

2 β = −ip± 1− p2 No amplification
error!

C056: Systems of linear equations • C057: Eigenvalue problems • C058: Characteristic equation

Leapfrog - modes

2/26/19ATMS 502 - Spring 2019

17

� We have two modes to the solution.
¡ This comes from the ± below.

¡ One is real (physical). One is computational.

€

λ = −iµsinβ ± 1−µ2
sin

2 β

Leapfrog - modes

2/26/19ATMS 502 - Spring 2019

18

� We have two modes to the solution.
¡ This comes from the ± below.

¡ One is real (physical). One is computational.
¡ To find out which is which, take ∆t,∆x 0.

÷ Then µ goes to 0; one root goes to +1, one to -1.
÷ Root of +1 is physical; no growth, all is well.
÷ Root of -1: switches sign every time step (ln).

¡ This is a not-so-good consequence
of our 3-time-level numerical scheme.

€

λ = −iµsinβ ± 1−µ2
sin

2 β

C055: Computational modes

Leapfrog stability - review

2/26/19ATMS 502 - Spring 2019

19

� We rewrote the 3-level scheme as 2-level:

� Write above as matrix, subtract l from diagonal, set
determinant to zero. Characteristic equation:

� Solve; 2 roots; physical and computational modes

� As ∆t and p Þ0: ”+” root approaches 1, “-” root: -1
¡ |l|=-1 means amplitude varies as (-1)n

€

˜ u
n +1 = ˜ v

n −µ ˜ u
n

2isinβ()

˜ v
n +1 = ˜ u

n

 so

˜ u
n +1

˜ v
n +1

 =

−2iµsinβ 1

1 0

˜ u
n

˜ v
n

€

−2iµsinβ − λ 1

1 0 − λ
= 0

€

λ = −iµsinβ ± 1−µ2
sin

2 β = −ip± 1− p2

2/26/19ATMS 502 - Spring 2019

20

Nesting

Nested grid BCs

2/26/19ATMS 502 - Spring 2019

21

� Nested grid:
¡ Shown below: grid-1 time step, q1 to q2
¡ Added: nested grid step, refinement factor

Grid 2 t+∆t

2

nest t+∆t/2

Time-interpolated
boundary conditions

Grid 2 t+∆t/2

Nested grid step #2

BC BC

∆t/2
€

q1grid 2 = (1− F)q1grid1 + F •q2grid1

where F =
nstepgrid 2 −1()
stepsgrid 2

Interpolation

2/26/19ATMS 502 - Spring 2019

22

� Interpolation: coarse Þ nested

J=4 5 6 7 8 9 10 11 12 36 37

J=1 5 9 13 17 21 25 121

//

Nested grid size … example

§ nx=121 (both coarse and nested grids)
§ nested grid is 121 nest points wide, and
§ nested grid is (121-1)/4=30 coarse points wide

Interpolation

2/26/19ATMS 502 - Spring 2019

23

� Interpolation: coarse Þ nested

Nested grids: Interpolation

a bx

€

f (x) = f (a) + f (b) − f (a)[]
x − a

b − a

J=4 5 6 7 8 9 10 11 12 36 37

J=1 5 9 13 17 21 25 121

//

Interpolation

2/26/19ATMS 502 - Spring 2019

24

� Interpolation: coarse Þ nested

Nested grids: Interpolation

a bx

€

f (x) = f (a) + f (b) − f (a)[]
x − a

b − a

nest(inest) = coarse(icoarse) +
(coarse(icoarse+1)-coarse(icoarse))*fraction

Interpolation

2/26/19ATMS 502 - Spring 2019

25

� Interpolation: coarse Þ nested

Nested grids: Coordinates

§ Example above: nested grid index j=1
… is at coarse grid index j=6.

§ icoarse = (inest-1)/ratio + first.nest.point

J=4 5 6 7 8 9 10 11 12 36 37

J=1 5 9 13 17 21 25 121

//

Interpolation

2/26/19ATMS 502 - Spring 2019

26

� Interpolation: old vs. new nested grids

§ Nested grid re-location:
ü interpolate from coarse Þ new nested grid
ü copy overlap region of old nest to new nest

Old
nest

new
nest

This example:
3:1 nesting

Interpolation

2/26/19ATMS 502 - Spring 2019

27

How often should we relocate the nest?
� As often as possible?

¡ Minimizes copying coarse data Þ nest
¡ This is more computationally expensive

÷ Imagine computing the truncation errors over a larger 2d domain,
frequently

� As rarely as possible?
¡ Eventually features of interest leave the nest
¡ Much of new nest would then

be copied from coarse grid

Feedback

2/26/19ATMS 502 - Spring 2019

28

� Feedback: copy nested Þ coarse

Updating the coarse grid

§ We require every 4th nest point to overlap a coarse point
§ In feedback, every 4th interior nested grid point is

copied back to the coarse grid.
§ What alternate approach might we consider ??

J=4 5 6 7 8 9 10 11 12 36 37

J=1 5 9 13 17 21 25 121

//

A D A P T I V E M E S H R E F I N E M E N T

2/26/19ATMS 502 - Spring 2019

29

Grid refinement & Clustering

• C008 – Truncation error
• C009 – Resolution
• C010 – AMR / nesting
• C051 – Nesting: grid placement, movement

Reference pages for this section:

Regridding procedure

2/26/19ATMS 502 - Spring 2019

30

� Regridding (Skamarock dissertation, pp. 12-13)
¡ 1) flag points needing refinement

÷ flagged if estimated error exceeds user threshold
¡ 2) cluster the flagged points – for two reasons

÷ a) separates “spatially distinct phenomena [like] shocks or fronts”
÷ b) subdivide to use several grids instead of one large region

¡ 3) fit rectangular grids around the clustered points
¡ 4) repeat steps 2,3, using different methods if necessary

÷ simple method [nearest neighbor] – ok for clustering, not rectangles
÷ connecting points – use minimum spanning trees or

nearest neighbor graphs
¡ clustering, fitting rectangles “most difficult part of regridding”

Regridding / clustering

2/26/19ATMS 502 - Spring 2019

31

Optimal grid size, number, locations
“Adaptive mesh refinement routines for Overture” -
William Henshaw, 2011 (link)

http://www.overtureframework.org/documentation/amr.pdf

Regridding / clustering

Optimal grid size, number, locations
2/26/19ATMS 502 - Spring 2019

32

“Adaptive mesh refinement routines for Overture” -
William Henshaw, 2011 (link)

http://www.overtureframework.org/documentation/amr.pdf

