Atms 502, CSE 566

 Numerical Fluid Dynamics

 Numerical Fluid Dynamics}

Plan for Today

ATMS 502
 CSE 566

Tuesday,
5 February 2019
Class \#7

- 1) REVIEW Takacs vs. Polar plots
- 2) NUMERICAL METHODS :
- Stability, continued:
r Norms; von Neumann's method
Apply to a numerical method
\star Operator definitions
- Phase error
* wavelength-dependent phase speeds
- The modified equation
- 3) CODE/DATA:

Program \#2 - continued

Review: Plots of scheme behavior

Amplitude

TAKACS'

PLOTS
(NOT SHOWING THE SAME NUMERICAL METHOD)

Anderson et al., chapter 4

Stability

 (4)
OBJECTIVES:

> DEVELOP THEORY AND METHODOLOGY FOR DETERMINING IF, HOW, AND WHENA SCHEME HAS SATISFACTORYSTABILITY.

FOLLOWING NOTES HANDED OUT IN LAST CLASS !!

References:

- A009 - Instability (physical)
- Co15 - Instability (numerical)

Operator definitions

USED FOR REMAINDER OF CLASS

FOLLOWING NOTES HANDED OUT IN LAST CLASS !!

Dispersion \& phase error
 IN CONTEXT OF: FOURIER SERIES

References:

- Co16 - Fourier series
- Co23 - Dispersion
- Co33 - Gibbs phenomenon

Fourier series

- Assuming we have a periodic function of period 2π, we can represent it with the following trig series:

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

- Solve using the Euler Formulas:

$$
\left.\left.\begin{array}{ll}
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
\end{array}\right\} \begin{array}{ll}
a_{0} & =\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) d t \\
n=1,2, \ldots & a_{n}
\end{array}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \cos \frac{2 n \pi t}{T} d t\right\} n=1,2, \ldots
$$

Fourier series

- Let's look at the representation of a square wave.

$$
f(x)=\left\{\begin{array}{l}
-k \text { when }-\pi<x<0 \\
k \quad \text { when } \quad 0<x<\pi
\end{array}\right.
$$

- The analytical solution turns out to be:

$$
\left.\begin{array}{l}
a_{0}=0 \\
a_{n}=0 \\
b_{n}=\frac{4 k}{n \pi}
\end{array}\right\}, \mathrm{n}=1,3,5 \ldots \text { such that } f(x) \approx \frac{4 k}{\pi}\left(\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\ldots\right)
$$

Fourier series \& square wave

- Fourier series cannot be used (with the strict equality) for a discontinuity; doing so invokes the Gibbs phenomenon.
- "While the rms error of the Fourier series goes to zero for an infinite number of terms, equality at every point is not guaranteed; the Gibbs phenomenon peaks have finite height and zero width."
- Coefficients in a truncated Fourier series can be used to reduce or eliminate the Gibbs effect; see References for more on these windowing methods.
- $\mathrm{N}=1,3,5$: three
waves shown: $\sin (x)$, $\sin (3 x)$, $\sin (5 x)$...

- Using one wave vs. sum of two waves

- Sum of first • A better three waves.

What if our scheme has phase errors?

- In this example, there is no phase shift - we add the terms correctly.

We'll take one component - 1 harmonic - and change it

- The second wave -- with wave number $k=3$-- will have a phase shift added to it.
- There are 11 contributing waves; all other components the other 10 waves - will remain the same.

Phase errors

- Dispersion distorts the solution by introducing wavenumber-dependent phase errors
- The phase relationship between the different wave components is changed.
- In this example, the $2^{\text {nd }}$ wave component was shifted by $+45^{\circ}$

The modified equation

WHY WE SEE CHARACTERISTIC (OR REALLY, DOMINANT)
ERRORS FOR TYPES OF SCHEMES

The modified equation

- Upstream scheme - truncation error:

$$
\begin{equation*}
u_{t}+c u_{x}=-\frac{\Delta t}{2} u_{t t}+\frac{c \Delta x}{2} u_{x x}+\text { higher order terms } \tag{1}
\end{equation*}
$$

- To say more about this scheme, we want the right side to be in terms of X derivatives, only.
- Take equation (1), and take d/dt:

$$
\begin{equation*}
u_{t t}+c u_{x t}=-\frac{\Delta t}{2} u_{t t}+\frac{c \Delta x}{2} u_{x x t}+\text { higher order terms } \tag{2}
\end{equation*}
$$

- And now take $-\mathrm{c} \cdot \mathrm{d} / \mathrm{dx}$ of (1):

$$
-c u_{t x}-c^{2} u_{x x}=\frac{c \Delta t}{2} u_{t t x}-\frac{c^{2} \Delta x}{2} u_{x x x}+\text { higher order terms }
$$

(3) for $\mathrm{u}_{\mathrm{tt}}=\ldots$

Modified equation: implicit viscosity

- Our original equation:

$$
\begin{equation*}
u_{t}+c u_{x}=-\frac{\Delta t}{2} u_{t t}+\frac{c \Delta x}{2} u_{x x}+\text { higher order terms } \tag{1}
\end{equation*}
$$

- Our expression for u_{tt} was:

$$
\begin{equation*}
u_{\mathrm{tt}}=c^{2} u_{x x}+\Delta t\left(-\frac{u_{t t t}}{2}+\frac{c}{2} u_{t t x}+\ldots\right)+\Delta x\left(\frac{c}{2} u_{x x t}-\frac{c^{2}}{2} u_{x x x}+\ldots\right) \tag{3}
\end{equation*}
$$

- Substituting, we get:

$$
u_{t}+c u_{x}=\frac{c \Delta x}{2}\left(1-\sqrt{u_{x x}}+(. .)(\Delta x)^{2} u_{x x x}+\right.\text { higher order terms }
$$

- This is the modified equation
- It is what is actually solved by the F.D. method
- U_{xx} term: "implicit" artificial viscosity! (not an implicit numerical method)

Modified equation: dissipative errors

- Modified equation:

$$
u_{t}+c u_{x}=\frac{c \Delta x}{2}\left(1-\sqrt{u_{x x}}+(. .)(\Delta x)^{2} u_{x x x}+\right.\text { higher order terms }
$$

- Why is this diffusive?
- Recap: we started with a hyperbolic PDE, $\mathrm{u}_{\mathrm{t}}+\mathrm{cu}_{\mathrm{x}}=0$.
- The modified equation tells us what we really solving.
- Now our analysis reveals terms like: $\mathrm{u}_{\mathrm{t}}=() \cdot \mathrm{u}_{\mathrm{xx}}$
${ }$ This is a parabolic equation!
- wait, weren't we solving a hyperbolic (transport) equation?

ะ Parabolic $>$ for example, heat transfer

- Bottom line: Dissipation!

Diffusive upstream method: polar plot

- Modified equation for the upstream method:

$$
u_{t}+c u_{x}=\frac{c \Delta x}{2}(1-v) u_{x x}+(. .)(\Delta x)^{2} u_{x x x}+\text { higher order terms }
$$

Figure 4-2 Amplification factor modulus for upstream differencing scheme.

Shift condition

- Modified equation for the upstream method:

$$
u_{t}+c u_{x}=\frac{c \Delta x}{2}\left(1-v<u_{x x}+(. .)(\Delta x)^{2} u_{x x x}+\right.\text { higher order terms }
$$

- What if the Courant number $v=1$ here?
- The $u_{x x}$ term on the right side of the modified equation disappears
- In fact, we know this scheme has a shift condition when the Courant number $v=1$.
* this means the solution is shifted one grid point per time step.

$$
u_{j}^{n+1}=u_{j}^{n}-v\left(u_{j}^{n}-u_{j-1}^{n}\right) ; \quad v=\left(\frac{c \Delta t}{\Delta x}\right)
$$

Problems with upwinding-type schemes

- Note the problem with upstream-type methods:

$$
u_{t}+c u_{x}=\frac{c y x}{2}(1-v) y_{x x}+(. .)(\Delta x)^{2} u_{x x x}+\text { higher order terms }
$$

- The implicit diffusion u_{xx} from this scheme is dependent on the local flow speed.
- So you have uneven damping throughout your flow
- Some modelers rely on this implicit* damping to stabilize their solution. We'll return to this later.
*Again, implicit here refers to the damping, not an implicit numerical method.

Summary: Errors vs. order of accuracy

- Explicit artificial viscosity

- An added term in a difference equation designed to add damping
- Implicit artificial viscosity
- Unphysical damping as a consequence of the finite difference scheme
- Summary of error properties
- Dispersion - distortion of waves as a result of odd derivative terms in the truncation error - even order accuracy!
- Dissipation - reduction of gradients as a result of even derivative terms in the truncation error - odd order accuracy!
- Diffusion: combined effect of dissipation and dispersion

Convergence

We've discussed:

- Finite difference approximations to derivatives
- Truncation error
- Taylor series
- Order of accuracy
- Consistency
- Stability
- Von Neumann's method
- CFL

Convergence -

Lax equivalence theorem

- If a finite difference scheme is:
- Linear
- Stable
- Accurate of order $(\Delta t)^{p},(\Delta x)^{q}$, then
- It is convergent of order (p,q)
- This has not been shown to apply to nonlinear PDE's !!
- Durran, §2.1.3, p. 40

Computer Program 2

Program 2: Advection

- Advection

- I set up 1-D arrays in my advection routines -
» $q 1 d(0: n x+1), u 1 d(n x+1), v 1 d(n y+1)$ no ghost points for $U, V!!$
- Advecting rows (X)

copy q1 (i, j) to q1d	
copy u(i,j) to u1d	$\left.\begin{array}{l}\text { all } \text { (rows) } \\ \hline ⿰ 氵\end{array}\right)$
\Longrightarrow	

- pass q1d, u1d to advect1d advect1d returns q1d_out
o copy q1d_out to q1(i,j)
- Advecting columns (Y)
- copy q1 (i, j) to q1d
- copy $v(i, j)$ to $v 1 d$
- pass q1d, v1d to advect1d *advect1d returns q1d_out
- copy q1d_out to q1(i,j)
discuss: how many 2D $q()$ arrays here?

