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"Momentum and scalar transport at the turbulent/non-turbulent interface of a jet" - Westerweel, Fukushima, Pedersen and Hunt; link
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https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/momentum-and-scalar-transport-at-the-turbulentnonturbulent-interface-of-a-jet/54D72600386F011AC9B3BEF0C5A9A9A0


ATMS 502
CSE 566

Tuesday,
5 February 2019

Class #7

Plan for Today

� 1) REVIEW
Takacs vs. Polar plots

� 2) NUMERICAL METHODS :
¡ Stability, continued:

÷ Norms; von Neumann’s method
÷ Apply to a numerical method
÷ Operator definitions

¡ Phase error
÷ wavelength-dependent phase speeds

¡ The modified equation

� 3) CODE/DATA:
Program #2 - continued
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Homework #1
prob #4 typo: 

should be
2∆x not ∆x !!



Review: Plots of scheme behavior
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Anderson et al., chapter 4
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OBJECTIVES :

D E V E L O P  T H E O R Y  A N D  M E T H O D O L O G Y  
F O R  D E T E R M I N I N G  I F ,  H O W ,  A N D  W H E N  A

S C H E M E  H A S  S A T I S F A C T O R Y  S T A B I L I T Y .
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Stability

References:
• A009 – Instability (physical)
• C015 – Instability (numerical)

following notes handed out in last class !!



U S E D  F O R  R E M A I N D E R  O F  C L A S S
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Operator definitions

C032:  Operator notation for finite differences

following notes handed out in last class !!



I N  C O N T E X T  O F :   F O U R I E R  S E R I E S
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Dispersion & phase error

References:
• C016 – Fourier series
• C023 – Dispersion
• C033 – Gibbs phenomenon



Fourier series
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� Assuming we have a periodic function of period 2p, 
we can represent it with the following trig series:

� Solve using the Euler Formulas:

€ 

f (x) = a0 + an cosnx +  bn sinnx( )
n=1

∞

∑

€ 

a0 =
1

2π
f (x)dx

−π

π

∫

an =
1
π

f (x)cos nx( )dx
−π

π

∫

bn =
1
π

f (x)sin nx( )dx
−π

π

∫
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  n =1,2,...

€ 

a0 =
1
T

f (t)dt
−T / 2

T / 2

∫

an =
2
T

f (t)cos 2nπt
T

dt
−T / 2

T / 2

∫

bn =
2
T

f (t)sin 2nπt
T

dt
−T / 2

T / 2

∫
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  n =1,2,...or

Period=T

C016:  Fourier Series.ATMS 502 - Spring 2019
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Fourier series

� Let’s look at the representation of a square 
wave.

� The analytical solution turns out to be:

€ 

f (x) =
−k  when - π < x < 0
k    when    0 < x < π
$ 
% 
& 

€ 

 
a0 = 0
an = 0

bn =
4k
nπ

# 

$ 

% 
% 

& 

% 
% 

,  n =1,3,5... such that f (x) ≈ 4k
π

sin x +
1
3

sin3x +
1
5

sin5x + ...
( 

) 
* 

+ 

, 
- 
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Fourier series & square wave

2/5/19

� Fourier series cannot be used (with the strict equality) for 
a discontinuity; doing so invokes the Gibbs 
phenomenon.

� “While the rms error of the Fourier series goes to zero for 
an infinite number of terms, equality at every point is not 
guaranteed; the Gibbs phenomenon peaks have finite 
height and zero width.”   

� Coefficients in a truncated Fourier series can be used to 
reduce or eliminate the Gibbs effect; see References for 
more on these windowing methods.

C033:  Gibbs phenomenonATMS 502 - Spring 2019
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� N=1,3,5: 
three 
waves 
shown: 
sin(x), 
sin(3x), 
sin(5x) …
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� Sum of first 
three waves.
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� A better 
approximation.

� Using one wave vs. 
sum of two waves



What if our scheme has phase errors?

� We’ll take one component - 1 
harmonic - and change it

� The second wave -- with wave 
number k=3 -- will have a 
phase shift added to it.

� There are 11 contributing 
waves; all other components -
the other 10 waves - will 
remain the same.

2/5/19

n In this example, there is 
no phase shift - we add 
the terms correctly.

C023:  Dispersion – numerical phase error.ATMS 502 - Spring 2019
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Phase errors

2/5/19

� Dispersion distorts the solution by introducing 
wavenumber-dependent phase errors

� The phase relationship between the
different wave components is 
changed.

� In this example, the 2nd wave 
component was shifted by +45˚

ATMS 502 - Spring 2019
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W H Y W E  S E E  C H A R A C T E R I S T I C
( O R  R E A L L Y ,  D O M I N A N T )

E R R O R S  F O R  T Y P E S  O F  S C H E M E S
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The modified equation

C034:  Modified equation



The modified equation
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� Upstream scheme - truncation error:

� To say more about this scheme, we want the right 
side to be in terms of X derivatives, only.
¡ Take equation (1), and take d/dt:

¡ And now take -c•d/dx of (1):

€ 

ut + cux = −
Δt

2
utt +

cΔx

2
uxx  + higher order terms (1)

€ 

utt + cuxt = −
Δt

2
uttt +

cΔx

2
uxxt  + higher order terms (2)

€ 

−cutx − c
2
uxx =

cΔt

2
uttx −

c
2
Δx

2
uxxx  + higher order terms (3)

Now: add 
(2) + (3) …
for utt = …

C008: truncation error • C022: Amplitude error • C023: Phase error • C034: Modified equation



Modified equation:  implicit viscosity
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� Our original equation:

� Our expression for utt was:

� Substituting, we get:

¡ This is the modified equation
¡ It is what is actually solved by the F.D. method
¡ Uxx term: “implicit” artificial viscosity! (not an implicit numerical method!)

€ 

u
tt

= c
2
u
xx

+ Δt −
u
ttt

2
+
c

2
u
ttx

+ ...
 

 
 

 

 
 + Δx

c

2
u
xxt
−
c
2

2
u
xxx

+ ...
 

 
 

 

 
 (4 = (eq. 2) + (3))€ 

ut + cux = −
Δt

2
utt +

cΔx

2
uxx  + higher order terms (1)

€ 

ut + cux =
cΔx

2
1−ν( )uxx + (..)(Δx)

2
uxxx + higher order terms

C037:  Implicit viscosity



Modified equation:  dissipative errors
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� Modified equation:

� Why is this diffusive?
¡ Recap:  we started with a hyperbolic PDE, ut+cux=0.
¡ The modified equation tells us what we really solving.
¡ Now our analysis reveals terms like: ut=()•uxx

÷ This is a parabolic equation!
¢ wait, weren’t we solving a hyperbolic (transport) equation?

÷ Parabolic > for example, heat transfer
¢ Bottom line:  Dissipation!

€ 

ut + cux =
cΔx

2
1−ν( )uxx + (..)(Δx)

2
uxxx + higher order terms



Diffusive upstream method:  polar plot
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� Modified equation for the upstream method:

€ 

ut + cux =
cΔx

2
1−ν( )uxx + (..)(Δx)

2
uxxx + higher order terms

L=2∆x L®∞



Shift condition
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� Modified equation for the upstream method:

� What if the Courant number n=1 here?
¡ The uxx term on the right side of the

modified equation disappears
¡ In fact, we know this scheme has a shift condition 

when the Courant number n=1. 
÷ this means the solution is shifted one grid point per time step.

€ 

ut + cux =
cΔx

2
1−ν( )uxx + (..)(Δx)

2
uxxx + higher order terms

€ 

u j

n+1 = u j

n −ν u j

n − u j−1

n( )  ;  ν =
cΔt

Δx

 

 
 

 

 
 

C035:  Shift condition



Problems with upwinding-type schemes
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� Note the problem with upstream-type methods:

� The implicit diffusion uxx from this scheme
is dependent on the local flow speed.
¡ So you have uneven damping throughout your flow
¡ Some modelers rely on this implicit* damping to 

stabilize their solution.  We’ll return to this later.

€ 

ut + cux =
cΔx

2
1−ν( )uxx + (..)(Δx)

2
uxxx + higher order terms

C036:  Upwind advection schemes; C037: Implicit viscosity

*Again, implicit here refers to the damping, not an implicit numerical method.



Summary: Errors vs. order of accuracy
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� Explicit artificial viscosity
¡ An added term in a difference equation designed

to add damping
� Implicit artificial viscosity

¡ Unphysical damping as a consequence of the finite difference scheme

� Summary of error properties
¡ Dispersion - distortion of waves as a result of odd derivative 

terms in the truncation error - even order accuracy!
¡ Dissipation - reduction of gradients as a result of even derivative 

terms in the truncation error - odd order accuracy!
¡ Diffusion: combined effect of dissipation and dispersion

C037:  Implicit viscosity



Convergence
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We’ve discussed:
� Finite difference 

approximations to derivatives

� Truncation error
¡ Taylor series
¡ Order of accuracy

� Consistency

� Stability
¡ Von Neumann’s

method
¡ CFL

Convergence -
Lax equivalence theorem

� If a finite difference scheme is:
¡ Linear
¡ Stable
¡ Accurate of order

(∆t)p, (∆x)q, then
� It is convergent of order (p,q)

¡ This has not been shown to apply to 
nonlinear PDE’s !!

¡ Durran, §2.1.3, p. 40

C011:  Convergence
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Computer Program 2

Staggered 
”C-grid”
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Program 2: Advection
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� Advecting rows (X)
¡ copy q1(i,j) to q1d
¡ copy u(i,j) to u1d
¡ pass q1d, u1d to advect1d

÷ advect1d returns q1d_out

¡ copy q1d_out to q1(i,j)

� Advecting columns (Y)
¡ copy q1(i,j) to q1d
¡ copy v(i,j) to v1d
¡ pass q1d, v1d to advect1d

÷ advect1d returns q1d_out

¡ copy q1d_out to q1(i,j)

all j (rows)

C014: Directional splitting

� Advection
¡ I set up 1-D arrays in my advection routines –

÷ q1d(0:nx+1), u1d(nx+1), v1d(ny+1)  no ghost points for U, V !!

all i (cols)

discuss: how many 2D q() arrays here?


