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http://www.sci.utah.edu/~chengu/Publications/Fusion_vis10.pdf

Plan for Today

2512“656"2 e 1) REVIEW
2 Takacs plots, method, error calc.
Thursday, e 2) CODE/DATA:
31 January 2019 Program #2 - handout

Class #6 e 3) NUMERICAL METHODS :
Polar plots
Stability
Consider one harmonic ...
Norms

von Neumann’s method
Apply to a numerical method
Operator definitions




TAKACS PP.

; . ? 1053-1054
Review: Takacs’ plots
* Plots — Amplitude and Phase Error
~ 0 = kAx = nondimensional wavenumber
» u = Courant number c*dt/dx
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TAKACS PP.
1049-1056

Review: Takacs’ scheme

» Goal: balance dissipation, dispersion (egn 4.3)
Chooses 2-step scheme for simplicity, cost

His method is 2nd order + “some of improved phase
characteristics associated w/third-order scheme”

[Q;H =aq;,tayq;+a g+ a-zqz—z]

He uses an additional grid point (j-2) in the scheme.
Strongest damping for waves with worst phase speed errors
Coefficient of extra point is a free parameter
o chosen to minimize the total error.

Least total error for a=(1+n)/6

ATMS 502 - Spring 2019 C022: Amplitude error; C023: Phase error; C026: Order of accuracy 1/31/19




TAKACS PP.

Rel)iew N Takacs' error 1055-1059

e Error computation

. 1 2
Total error is mean square error (6.1) | £ror = —E(‘IT ~4p)
Dissipation error (6.6)

Dispersion error (6.7) = (total - dissipation)
Calculations involve
standard deviation of true (q;) and finite diff. (q,) fields

linear (e.g. Pearson's) correlation coefficient o
o If p=1, only error is due to dissipation (amplitude)

o If p=0, only error is due to dispersion (phase)

ATMS 502 - Spring 2019 C022: Amplitude error; C023: Phase error; C024: Mean square error; C025: Correlation 1/31/19




Computer Program 2




» Coding programs is like test taking ...
There are distinct advantages to having a plan.

» 1) Make the necessary arrays 2D.

» 2) Code & evaluate the initial conditions (ICs).
Create scalar field + U, V velocity components
Be careful with dimensions & physical locations
Plot it - plotting+code examples online ~tg457444/502/Pgm?2

* 3) Set the boundary conditions (BCs)

Alter your BC routine for two dimensions.

* 4) Now continue with 2D advection.
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e Advection

| set up 1-D arrays in my advection routines —
g1d(0:nx+1), uld(nx+1), vid(ny+1) no ghost points for U, \/'I!

» Advecting rows (X) ey Advecting columns (Y)
copy q1(i,j) to q1d copy q1(i,j) to q1d  4hilely
copy u(i,j) to uid % copy v(i,j) to vid mmm
pass q1d, uld to advecti1d pass q1d, v1d to advect1d

advect1d returns q7d_out advect1d returns q7d_out
copy q1d_out to q1(i,)) copy q1d_out to q1(i,))

discuss: how many 2D q() arrays here?

ATMS 502 - Spring 2019 CO014: Directional splitting 113119




Polar plots




1. Find unit circle, courant #s

. UNIT CIRCLE

1.50 1.00 0.50 0.00 0.50 1.00

j6l
\ Figure 4-2 Amplification factor modulus for upstream differencing scheme.
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Anderson et al., chapter 4
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2. Find 2Ax, 4AX, infinite waves

4 . N

UNIT CIRCLE

v =1,25
B = kAx 1s angle
from +x axis

2Ax

1.50 1.00 0.50 0.00 0.50 1.00

6l |A| for all curves

\ Figure 4-2 Amplification factor modulus for upstream differencing scheme. approach 1 for
infinite

wavelengths:

no error!




3. Identify regions >1, <1

with respect to
the unit circle!

VALUE > 1 ..
#ax | |A|>1: AMPLIFYING

NIT CIRCLE
v=1.25
VALUE < 1:
|A|<1: DAMPING
2Ax
1.50  1.00 0.50 0.00 0.50 1.00

jal
\ Figure 4-2 Amplification factor modulus for upstream differencing scheme.

/

__—

Anderson et al., chapter 4




Review: Polar plots of errors

1.50 1.00 ~ o.s0 S0 0.50 1.00
<— Growing Decaying —»

UNIT CIRCLE

Anderson et al., chapter 4




Stability




Examples of instability in nature

» Thunderstorms

* From
Aircraft

» Location
Wyoming

"« Duration

wildtre smokie R | - i hours
: -+ Date
~ 7/11/2012
* Credit
. oo DC3 project

earthobservatory.nasa.gov/IOTD /view.php?id=78497 smoke from Colorado fire
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http://earthobservatory.nasa.gov/IOTD/view.php?id=78497

Examples of instability in nature

» Thunderstorms

* From
Ground

» Location
Booker TX

o Duration
hours

e Date

. Sl o 6/3/2013

Instability has been defined as "outputs of internal states o (Credit
growing without bounds" or "if small perturbations cause Mike Oblinski
changes that reinforce the original perturbation”

ATMS 502 - Spring 2019 A.009: Instability (physical) 1/31119



http://uproxx.com/webculture/supercell-thunderstorm-time-lapse-video/

Examples of instability in nature

» Nonlinear instability in toroidal fusion plasma
* From:

Simulation

» Location:

Nat’l Energy
Research
Scientific
Computing

| Center wersc)
N e Credit

The extended magnetohydrodynamlcs (MHD) code M3D was used to study | MIT: Linda
magnetic confinement and stability properties of fusion plasma in a Tokamak. .
Edge Localized Modes were noted, a new class of plasma instability. Suglyama

Ref: www.nersc.gov/science/fusion-science/a-new-class-of-tokamak-nonlinear-plasma-instabili
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http://www.nersc.gov/science/fusion-science/a-new-class-of-tokamak-nonlinear-plasma-instability/

Stability: computational perspective

» What is stability?
Let’s work backwards. What is instability?

» Instability
Unstable numerical scheme: numerical solution grows
much more rapidly than the true one

» What is “more rapidly?”
We must be knowledgeable of the PDE properties (and thus of
the physical phenomenon) to assess reasonable behavior.

If amplitude should not change —
any continued growth in the numerical solution is unstable

If exponential growth in amplitude is possible
than any growth beyond that is considered a numerical instability.

ATMS 502 - Spring 2019 1/31/19




» Purpose: assess if F.D. scheme is stable.

Unstable scheme: numerical solution grows
much more rapidly than the true one

» How do we do this?

First: consider any solution as Fourier series

There are issues with discontinuities. This brought Fourier “much

criticism” from the French Academy of Science at the time.
We’'ll discuss this more later.

Then: examine behavior of one wave component

=« if every Fourier component is stable ...
= i.e. every possible wave’s amplitude is bounded ...
= then our scheme must be stable.

ATMS 502 - Spring 2019 C.016: Fourier Series 1/31/19



Consider any solution as representable as a Fourier series
Examine behavior of one component

if every Fourier component is stable ..
i.e. every possible wave’s amplitude i is bounded ..
then our scheme must be stable.

suppose our solution q(x,t) should not amplify at all. Then ...

N
. n _ n _ikjAx n 0 ikjAx, n+l 0 ikjAx
Series: |4; = E a.e = g, =qe"; q; =A (ake )

k=—N A A T

INITIAL SOLUTION
GENERAL CONDITION AFTER ONE

SERIES  (SUPERSCRIFT O TIME STEP

WAVENUMBER
({K))
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Back up a minute: math review

» Some function f

[f=eik"; x = jAx; f=eik(jm)}

o This has amplitude 1 and phase 0 ..

[e”’ =cosf + isin6 ]

o So we’re assuming fis some kind of sinusoidal function.
Here, consider one wave component, with wavenumber k.

o Wavelength L. = 2n/k so ... [kx _ ZJL’{}

= kx has units of an angle. L




After one step the solution amplitude will be:

[aZ =Aa” J

A, 1s the (numerical) amplification factor
for wavenumber Fk.

We can relate the amplitude of wave number k to
amplitudes at earlier times, back to t=t,, assuming
the physical solution is bounded:

[ a, = Aka,’f‘1 =..= [Ak]na,? ]

ATMS 502 - Spring 2019 1/31/19



» The von Neumann stability condition:

The (numerical) amplification factor A, of every
resolvable Fourier component must be bounded
such that: [

Wikipedia

|A,| =1+ yAt ; y independent of k,At,Ax}

We'll go with the more restrictive criteria:||4,| <1

This “<1” is satisfactory for constant-speed advection ...for which
there should be no distortion and no amplitude change w/time.

|A.| =1 means the numerical solution results, over time, remain
bounded by their initial values. Appropriate if the norm of the true
solution is constant with time: |¢"| <|¢°|

ATMS 502 - Spring 2019 C.020: von Neumann stability condition 1/31/19

John von Neumann



» How we measure amplitude behavior: norms

For vector x - a chain of numbers -
L, norm: sum of absolute values of all numbers

n

=2

i=1

L, norm: square root of sum of squares

o, =y S [

Infinite norm: maximum value:

X.

1

|||, = max|x| for Isi=N

There are similar relations for matrix norms

ATMS 502 - Spring 2019 C.021: vector and matrix norms 173119



von Neumann’s method: limitations

» Small print: ||A|=!

This is appropriate when the true solution is bounded by
the norm of the initial data

If the stability criteria is met, every Fourier component is
stable, and the full solution is, too.

The Von Neumann condition is a necessary and sufficient
condition for stability.

The Von Neumann method is strictly speaking only
applicable to linear, constant-coefficient problems

Sufficiency only for single equations in one unknown
Periodic boundary conditions are implied here.

ATMS 502 - Spring 2019 1/31/19




Bottom line:
We'll insert a form

Into the finite difference expression.

The spatial information will be expressed in
the exponential: elk2x,

The time inforng}e}tion will be included in
the coefficient ¢, such that { énﬂ}
or

~n

the amplification factor is: "

ATMS 502 - Spring 2019 1/31/19



(1-cosx) = 23in2(§)

Stability Example (1)  |-usero mic wenm




1-D diffusion equation

{q;’” -4 _ © (61}11 -2q; + 6]?_1)1

At Ax®
~n _ikjAx

Substituting ¢/ = "¢, and simplifying gives
[ gt =q" [1 + G(e”‘Ax I S )] (0=KAt/Ax*) ]

and amplification factor (now called 1):

{)L =1+2a(coskAx—1) =1-40sin” (k%“)}

and from requiring [I)L < 1|] we obtain:[O <o < 1/2]

ATMS 502 - Spring 2019 1/31/19



Operator definitions




See Durran,
Appendix A.1

» Shorthand for differencing:

4 f(x-l_nAx)_f(x_nAx)\ /(Sf(X)= S = Sian )
5 F(x) = 2 2 ) Ax
\_ " nAx Y, S, f(x)= Jii = Jict
» ... and for averaging: \_ 2Ax

{?m =% f(x+%)+f(x—%)ﬂ /?x _ i ;‘ i-1/2 A

A |

\_ 2 J

uoswyayjip ® ‘(1 'v) ueung

Evaluate udT/dx here...

ATMS 502 - Spring 2019 C032: Operator notation for finite differences 1/31/19



Operators: manipulation

82f=0.(0.f) 0,(7°) = 8,04




