

Plan for Today

ATMS 502
CSE 566

Thursday,
31 January 2019
Class \#6

- 1) REVIEW

Takacs plots, method, error calc.

- 2) CODE/DATA:

Program \#2 - handout

- 3) NUMERICAL METHODS :

Polar plots
Stability
Consider one harmonic ...
Norms
von Neumann's method Apply to a numerical method Operator definitions

Review: Takacs' plots

- Plots - Amplitude and Phase Error
$\theta=\mathrm{k} \Delta \mathrm{x}=$ nondimensional wavenumber
$\mu=$ Courant number $c^{*} d t / d x$
Waves

Review: Takacs' scheme

- Goal: balance dissipation, dispersion (eqn 4.3)
- Chooses 2-step scheme for simplicity, cost
- His method is 2nd order + "some of improved phase characteristics associated w/third-order scheme"

$$
q_{j}^{n+1}=a_{1} q_{j+1}^{n}+a_{0} q_{j}^{n}+a_{-1} q_{j-1}^{n}+a_{-2} q_{j-2}^{n}
$$

- He uses an additional grid point (j-2) in the scheme.
${ }^{*}$ Strongest damping for waves with worst phase speed errors
* Coefficient of extra point is a free parameter
o chosen to minimize the total error.
\approx Least total error for $\alpha=(1+\mu) / 6$ (Figs. 5,7)

Review: Takacs' error

- Error computation
- Dissipation error (6.6)
- Dispersion error (6.7) $=$ (total - dissipation $)$
- Calculations involve
${ }^{2}$ standard deviation of true (q_{T}) and finite diff. (q_{D}) fields
* linear (e.g. Pearson's) correlation coefficient ρ
- If $\rho=1$, only error is due to dissipation (amplitude)
- If $\rho=0$, only error is due to dispersion (phase)

Computer Program 2

Program 2 - recommendations

- Coding programs is like test taking ...
- There are distinct advantages to having a plan.
- 1) Make the necessary arrays 2D.
- 2) Code \& evaluate the initial conditions (ICs).
- Create scalar field + U, V velocity components
- Be careful with dimensions \& physical locations
- Plot it - plotting+code examples online $\sim \operatorname{tg} 457444 / 502 /$ Pgm2
- 3) Set the boundary conditions (BCs)
- Alter your BC routine for two dimensions.
- 4) Now continue with 2D advection.

Program 2: Advection

- Advection

- I set up 1-D arrays in my advection routines -
» $q 1 d(0: n x+1), u 1 d(n x+1), v 1 d(n y+1)$ no ghost points for $U, V!!$
- Advecting rows (X)

- pass q1d, u1d to advect1d advect1d returns q1d_out
o copy q1d_out to q1(i,j)
- Advecting columns (Y)
- copy q1 (i, j) to q1d
- copy $v(i, j)$ to $v 1 d$
- pass q1d, v1d to advect1d *advect1d returns q1d_out
- copy q1d_out to q1(i,j)
discuss: how many 2D $q()$ arrays here?

Polar plots

REPRESENTING AMPLITUDE, PHASE ERROR
QUESTIONS WE ARE ADDRESSING:

1. HOW DOES ERROR VARY WITH COURANT NUMBER?
2. HOW DOES ERROR VARY WITH WAVELENGTH?

1. Find unit circle, courant \#s

Figure 4-2 Amplification factor modulus for upstream differencing scheme.

2. Find $2 \Delta x, 4 \Delta x$, infinite waves

3. Identify regions $>1,<1$

Anderson et al., chapter 4

Review: Polar plots of errors

Amplitude

Anderson et al., chapter 4

Stability

OBJECTIVES:

> DEVELOP THEORY AND METHODOLOGY FOR DETERMINING IF, HOW, AND WHEN A SCHEME HAS SATISFACTORY STABILITY.

References:

- A009 - Instability (physical)
- Co15 - Instability (numerical)

Examples of instability in nature

- Thunderstorms

wildire smoke

Examples of instability in nature

- Thunderstorms

Instability has been defined as "outputs of internal states growing without bounds" or "if small perturbations cause changes that reinforce the original perturbation"

- From
- Ground
- Location
- Booker TX
- Duration
- hours
- Date
- 6/3/2013
- Credit

Mike Oblinski

Examples of instability in nature

- Nonlinear instability in toroidal fusion plasma

The extended magnetohydrodynamics (MHD) code M3D was used to study magnetic confinement and stability properties of fusion plasma in a Tokamak. Edge Localized Modes were noted, a new class of plasma instability.

- From:
- Simulation
- Location:
- Nat'l Energy Research Scientific Computing Center (NERSC)
- Credit
- MIT: Linda Sugiyama

Stability: computational perspective

- What is stability?
- Let's work backwards. What is instability?
- Instability
- Unstable numerical scheme: numerical solution grows much more rapidly than the true one
- What is "more rapidly?"
- We must be knowledgeable of the PDE properties (and thus of the physical phenomenon) to assess reasonable behavior.
- If amplitude should not change -
any continued growth in the numerical solution is unstable
- If exponential growth in amplitude is possible
than any growth beyond that is considered a numerical instability.

Quantifying instability

- Purpose: assess if F.D. scheme is stable.
- Unstable scheme: numerical solution grows much more rapidly than the true one
- How do we do this?
- First: consider any solution as Fourier series
* There are issues with discontinuities. This brought Fourier "much criticism" from the French Academy of Science at the time. We'll discuss this more later.
- Then: examine behavior of one wave component
- if every Fourier component is stable
- i.e. every possible wave's amplitude is bounded ...
- then our scheme must be stable.

Stability

- Consider any solution as representable as a Fourier series
- Examine behavior of one component
if every Fourier component is stable ...
i.e. every possible wave's amplitude is bounded ...
\% then our scheme must be stable.
x suppose our solution $\mathrm{q}(\mathrm{x}, \mathrm{t})$ should not amplify at all. Then ...

Back up a minute: math review

- Some function f

$$
f=e^{i k x} ; \quad x=j \Delta x ; \quad f=e^{i k(j \Delta x)}
$$

- This has amplitude 1 and phase θ..

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

- So we're assuming f is some kind of sinusoidal function. Here, consider one wave component, with wavenumber k.
- Wavelength $\mathrm{L}=2 \pi / \mathrm{k}$ so ...
$\times k x$ has units of an angle.

$$
k x=2 \pi \frac{x}{L}
$$

Amplification factor

- After one step the solution amplitude will be:

$$
a_{k}^{n}=A_{k} a_{k}^{n-1}
$$

- A_{k} is the (numerical) amplification factor for wavenumber k.
- We can relate the amplitude of wave number k to amplitudes at earlier times, back to $\mathrm{t}=\mathrm{t}_{\mathrm{o}}$, assuming the physical solution is bounded:

$$
a_{k}^{n}=A_{k} a_{k}^{n-1}=\ldots=\left[A_{k}\right]^{n} a_{k}^{0}
$$

Stability condition

- The von Neumann stability condition:
- The (numerical) amplification factor A_{k} of every resolvable Fourier component must be bounded such that:

$$
\left|A_{k}\right| \leq 1+\gamma \Delta t ; \gamma \text { independent of } \mathrm{k}, \Delta \mathrm{t}, \Delta \mathrm{x}
$$

- We'll go with the more restrictive criteria: $\left|A_{k}\right| \leq 1$
${ }^{*}$ This " ≤ 1 " is satisfactory for constant-speed advection ...for which there should be no distortion and no amplitude change w/time.
${ }^{x}\left|A_{k}\right| \leq 1$ means the numerical solution results, over time, remain bounded by their initial values. Appropriate if the norm of the true solution is constant with time: $\left\|q^{n}\right\| \leq\left\|q^{0}\right\|$

Measures of magnitude

- How we measure amplitude behavior: norms

For vector x - a chain of numbers -
${ }^{*} L_{1}$ norm: sum of absolute values of all numbers

$$
\|x\|_{1} \equiv \sum_{i=1}^{n}\left|x_{i}\right|
$$

${ }^{2} \mathrm{~L}_{2}$ norm: square root of sum of squares

$$
\|x\|_{2} \equiv \sqrt{\sum\left|x_{j}\right|^{2}}
$$

Infinite norm: maximum value:

$$
\|x\|_{\infty} \equiv \max \left|x_{i}\right| \text { for } 1 \leq \mathrm{i} \leq \mathrm{N}
$$

- There are similar relations for matrix norms

von Neumann's method: limitations

(25)

- Small print: $A_{k} \mid \leq 1$
- This is appropriate when the true solution is bounded by the norm of the initial data
- If the stability criteria is met, every Fourier component is stable, and the full solution is, too.
- The Von Neumann condition is a necessary and sufficient condition for stability.
* The Von Neumann method is strictly speaking only applicable to linear, constant-coefficient problems
- Sufficiency only for single equations in one unknown
* Periodic boundary conditions are implied here.

Applying von Neumann's method

- Bottom line:
- We'll insert a form

$$
q_{j}^{n}=\tilde{q}^{n} e^{i k x}=\tilde{q}^{n} e^{i k j x}
$$

- Into the finite difference expression.
- The spatial information will be expressed in the exponential: $e^{i k j \Delta x}$.
- The time information will be included in the coefficient \tilde{q}^{n}, such that the amplification factor is:

$$
A(\text { or } \lambda)=\frac{\tilde{q}^{n+1}}{\tilde{q}^{n}}
$$

Stability Example (1)

$$
(1-\cos x)=2 \sin ^{2}\left(\frac{x}{2}\right)
$$

*USEFUL TRIG IDENTITY!

The 1-D diffusion equation: $\left.\frac{q_{j}^{n+1}-q_{j}^{n}}{\Delta t}=K \frac{\left(q_{j+1}^{n}-2 q_{j}^{n}+q_{j-1}^{n}\right)}{\Delta x^{2}}\right)$
Substitute $q_{j}^{n}=\tilde{q}^{n} e^{k j \Delta x}$, simplify:
Ster

Stability Example - Summary

- 1-D diffusion equation

$$
\frac{q_{j}^{n+1}-q_{j}^{n}}{\Delta t}=K \frac{\left(q_{j+1}^{n}-2 q_{j}^{n}+q_{j-1}^{n}\right)}{\Delta x^{2}}
$$

- Substituting $q_{j}^{n}=\tilde{q}^{n} e^{k_{i j \alpha} x}$, and simplifying gives

$$
\tilde{q}^{n+1}=\tilde{q}^{n}\left[1+\sigma\left(e^{i k x t}-2+e^{-k \Delta x}\right)\right] \quad\left(\sigma=K \Delta t / \Delta x^{2}\right)
$$

- and amplification factor (now called λ):

$$
\lambda=1+2 \sigma(\cos k \Delta x-1)=1-4 \sigma \sin ^{2}\left(\frac{k \Delta x}{2}\right)
$$

- and from requiring $|\lambda \leq 1|$ we obtain: $0 \leq \sigma \leq 1 / 2$

Operator definitions

USED FOR REMAINDER OF CLASS

Operator definitions

- Shorthand for differencing:

$$
\delta_{n x} f(x)=\frac{f\left(x+\frac{n \Delta x}{2}\right)-f\left(x-\frac{n \Delta x}{2}\right)}{n \Delta x}
$$

... and for averaging:

$$
\begin{aligned}
& \delta_{x} f(x)=\frac{f_{i+1 / 2}-f_{i-1 / 2}}{\Delta x} \\
& \delta_{2 x} f(x)=\frac{f_{i+1}-f_{i-1}}{2 \Delta x}
\end{aligned}
$$

$$
\bar{f}^{n x}=\frac{1}{2}\left[f\left(x+\frac{n \Delta x}{2}\right)+f\left(x-\frac{n \Delta x}{2}\right)\right]
$$

Evaluate $u \cdot d T / d x$ here...

Operators: manipulation

$$
\delta_{x}^{2} f=\delta_{x}\left(\delta_{x} f\right)
$$

$$
\delta_{\mathrm{x}}\left(\bar{u}^{x}\right)=\delta_{2 x} u
$$

