PROGRAM #2

Converting program 1 => program 2

in C and Fortran



Program 1 —overview - C

-- Program 1 and its subroutines do this --
calls ic routine to set s1() initial conditions
calls bc routine to set periodic BCs

variables passed to the advection routine:
o 1d “time level n” scalar field s1[NXDIM]
o 1d “time level n+1” field s2[NXDIM]
o fixed flow speed c, time step dt, spatial increment dx

advection routine:
o takes as input: flow speed c, grid spacing dx and time step dt
o courant =c*dt/dx (can be set before the for-loop, since c is constant)

op- O USes Lax-Wendroff scheme, loop 11 ..12
'[ s2[i] = s1[i] — courant * ...

o s2 array has updated values returned to main program.

2/6/19 ATMS 502 / CSE 566

main pgm
£iime loop T

|

until
done




why “-I1” here? because the for-loop

is over grid values with ghost points,

but our uld[] array — like our 2d u[][] and Vv[][]
arrays — have no ghost points. uld[0] is one-

Program 2 — Changes in bOId! _ C // half grid length to the left of s1d[I1] !!

/

/ main pgm

-- Program 2 and its subroutines do this -- / £time loop I
e dimension 2D arrays s1, s2 and 2D velocity component ar;ays U, Vv

e delete history[] and “c” varlables — no longer needed )/

e pass sl, s2 toic() and bc() routines; K 1
* implement two-dimensional IC, as well as 0-gradient BCs ~ /

* \new 2-D advection routine: calls advectid. R

* input from pgm2.c: 2-D arrays s1, s2, U, V; only s1,s2 havé ghost points. js"'? ggt:;'b’;wacgvk;’ci:ld
e also input: dt, dx, and the advection-type choice K advection just
o declare new 1-D arrays s1d_in(), s1d_out(), uld() - moves data.

o for X & Y advection: copy sl to s1d_in(), U-or-V to uld()
pass 1D arrays to advectld, copy s1d_out back to si()

° advectld() routine: start this with copy of old advec,t’fén routine! » i
unti

* input: constants (dt, dx, advection type), 1-D arrays (s1d_in, s1d_out, uld) Tore

o uses Lax-Wendroff scheme, (still) 1-D for-Ioop Il J2
{ " set courant number |n5|de do-loop:

00,

courant = dt/dx*0. 5*(uld[/-l1]+u1d[l+1-11])
= s1d out(i) =s1d in(i) — courant *
2/6/19 ATMS 502 / CSE 566 3

d




*If you haven’t already started. This

P rog ra m 2 —_— S u m m a ry - C | makes a complete copy of one folder

(pgm1) and puts it in the other (pgm?2).

Viake a copy*of your pgm1 folder and call it pgm2: cp -R pgm1 pgm2
In pgm2.c add #define for J1, J2, NYDIM similar to 11, 12, NXDIM.
Change BC WIDTH to 2 or 3 (3 if planning to do extra-credit)

Implement 2D arrays! s1, s2, strue arrays will be [NXDIM][NYDIM] & and have ghost points
o Remember later in the class, NXDIM will not equal NYDIM.
o add 2-D velocity arrays u and v — neither will have any ghost points — remember staggering!!
o change your pgm?2.c call to advection() to also pass velocity arrays u, v.

Implement your 2-D initial condition inside ic(), plot it, compare to mine.
Implement your 2-D O-gradient boundary conditions inside bc().

Co PY advection.c to advectld.c advectid.cis most easily started as a copy of pgm1’s advection.c!

(PN

o Make the changes to advectld shown in the previous slide: no “c” variable, pass a
1-D uld (or velocitylD or whatever you call it) array containing the 1D flow speed.

o Move courant number math inside your Lax-Wendroff loop as shown on prior slide.

Change advection.c : Make old s1, s2 arrays to be 2-D, add 2-D velocity arrays, add new
1-D arrays, pass 1-D slices of s1 and of velocity to advect1d.
Try pgm?2 first by doing 2D contour plots every time step.

2/6/19 ATMS 502 / CSE 566 4



Program 1 — overview — Fortran 90

* Global data module:

contains these variables -

* grid dimension nx
 grid spacing dx

* flow speed c

* history array()

* 1D arrays:
o s1, s2, strue

2/6/19

-- Program 1 and its subroutines do this --
* callsictosetsl, bcto set periodic BCs

main pgm
£iime loop T

— e advection() routine: does all the “work”

o advection() does “USE global_data” for 1D arrays
o there is only (1-D) X-advection here

* calls the advection() routine:
o passes only dt and advection_type to advection

o can set courant number before do-loop:
= courant = dt/dx*c (since c = constant)

loop <O USES Lax- Wendroff scheme, 1-D loop 1..
-I‘_O = s1d out(i) =s1d _in(i) — courant * ...
until
done

ATMS 502 / CSE 566 5




Program 2 — changes in bold! — Fortran 90

-- Program 2 and its subroutines do this --
* Global data module:  mainpen
— time loop
contains these variables -

o passes only dt and advection_type to advection

calls ic to set 2-D s1, bc to set 0-gradient BCs
calls the (now 2-D) advection() routine:

* grid dimension nx

* add: grid dim ny

advection() routine: now handles 2D+1D arrays

4 o advection() still does “USE global data” for 2D arrays
* grid spacing dx o declare new 1-D arrays s1d_in(), s1d_out(), uld()
s—flowspeetet _jelcte- %“ o for X & Y advection: copy S1 & U-or-V to s1d_in(), uld(),
a—historarea !ethese vars! pass 1D arrays to advect1d, copy s1d_out back to si()
e how 2d arrays: th;jlb./”;vjvre'itifd_ ° advectld() routine: start this with copy of old advection routine!
o s1,s2, strue advectpn Just o do Not “USE global_data” here! everything passed

o uses Lax-Wendroff scheme, (still) 1-D loop 1...nx

* add 2d arrays:
until * foop = set courant number inside do-loop:

o u, v flow arrays done courant = dt/dx*0.5*(uld(i)+uld(i+1))
= s1d out(i) =s1d _in(i) — courant * ...

2/6/19 ATMS 502 / CSE 566 6



*If you haven’t already started. This

Program 2 — summary — Fortran90 ress cmece oy ofon e

(pgm1) and puts it in the other (pgm?2).

* Make a copy™of your pgm1l folder and call it pgm2: cp -R pgm1 pgm2
* In global data.fo0:

o add 2"¥ dimension “ny”, set equal to nx. later in the semester nx will not equal ny!
o make scalar arrays 2D! s1, s2, strue arrays will be (-2:nx+3,-2:ny+3) if you use 3 ghost points
o add 2-D velocity arrays u and v — neither will have any ghost points — remember staggering!!

* Implement your 2-D initial condition inside ic(), plot it, compare to mine.
* Implement your 2-D O-gradient boundary conditions inside bc().

* Co Py adVECtion.fQO to advectl df90 advect1d.f90 is most easily started as a copy of pgm1’s advection.f90!

o, 7”2

o Make the changes to advectld shown in the previous slide: no “c” variable, pass a
1-D uld (or velocitylD or whatever you call it) array containing the 1D flow speed.

o Move courant number math inside your Lax-Wendroff loop as shown on prior slide.

* Change advection.f90 : Change s1, s2 arrays to be 2-D, add 2-D velocity arrays,
add new 1-D arrays, pass 1-D slices of s1 and of velocity to advect1d.

* Try pgm?2 first by doing 2D contour plots every time step.

2/6/19 ATMS 502 / CSE 566 7



2-D Advection routine

| call the first dimension (columns) “i” and 2" dimension “j” (rows). You don’t have to do that if you prefer a different convention!!

all i (columns)

* Advecting columns (Y) i

o Loop over all columns (1stdim., i)

. Loop over all rowsj with ghost points
{ v copy s1(i,j) to s1d _in

all j (rows)

» Advecting rows (X) —=

— o Loop over all rows (2" dimension, j)

{- Loop over all columns i with ghost points
v copy s1(i,j) to s1d_in

(no

= Loop over all columns i=1,nx+1 grost
{ v copy u(i,j) to u1d pomnts)

(no

= Loop over all rows j=1,ny+1 grost
{ v copy v(i,j) to u1d points)
= call advectid

v pass s1d_in, u1d to advectid
v advect1d returns updated s7d out

« call advect1d
v pass s1d_in, u1d to advectid
v advect1d returns updated s7d out

{- Loop over all columns i =1,nx 7 { Loop over all rows j=1,ny "
- v copy s1d_out to s1(i,j) points) - v copy s1d_out to s1(i,j)  roints)

Since nx=ny, you can use s1d_in, s1d_out, uld for both X- and Y- data slices. Later when nx, ny differ, you declare based on the larger dimension.
2/6/19 ATMS 502 - Spring 2019 8



