
PROGRAM #2
Converting program 1 => program 2

in C and Fortran

2/6/19 ATMS 502 / CSE 566 1

Program 1 – overview - C

• calls ic routine to set s1() initial conditions
• calls bc routine to set periodic BCs
• variables passed to the advection routine:

o 1d “time level n” scalar field s1[NXDIM]
o 1d “time level n+1” field s2[NXDIM]
o fixed flow speed c, time step dt, spatial increment dx

• advection routine:
o takes as input: flow speed c, grid spacing dx and time step dt
o courant = c*dt/dx (can be set before the for-loop, since c is constant)
o uses Lax-Wendroff scheme , loop I1 ..I2

s2[i] = s1[i] – courant * …
o s2 array has updated values returned to main program.

2/6/19 ATMS 502 / CSE 566 2

loop

-- Program 1 and its subroutines do this --

main pgm
time loop

BC

advection

until
done

stats,
plots

Program 2 – changes in bold! - C

• dimension 2D arrays s1, s2 and 2D velocity component arrays U, V
• delete history[] and “c” variables – no longer needed

• pass s1, s2 to ic() and bc() routines;
• implement two-dimensional IC, as well as 0-gradient BCs

• new 2-D advection routine: calls advect1d.
• input from pgm2.c: 2-D arrays s1, s2, U, V; only s1,s2 have ghost points.

• also input: dt, dx, and the advection-type choice

o declare new 1-D arrays s1d_in(), s1d_out(), u1d()

o for X & Y advection: copy s1 to s1d_in(), U-or-V to u1d(),

pass 1D arrays to advect1d, copy s1d_out back to s1()

• advect1d() routine: start this with copy of old advection routine!
• input: constants (dt, dx, advection type), 1-D arrays (s1d_in, s1d_out, u1d)

o uses Lax-Wendroff scheme , (still) 1-D for-loop I1 ..I2
§ set courant number inside do-loop:

courant = dt/dx*0.5*(u1d[i-I1]+u1d[i+1-I1])
§ s1d_out(i) = s1d_in(i) – courant * …

2/6/19 ATMS 502 / CSE 566 3

-- Program 2 and its subroutines do this --
main pgm

time loop

BC

advection

until
done

advect1d

1
-D

d
a
ta

stats,

plots

loop

why “-I1” here? because the for-loop

is over grid values with ghost points,

but our u1d[] array – like our 2d u[][] and v[][]

arrays – have no ghost points. u1d[0] is one-

half grid length to the left of s1d[I1] !!

actual “work” is

done by advect1d.

advection just

moves data.

Program 2 – summary - C
• Make a copy* of your pgm1 folder and call it pgm2: cp -R pgm1 pgm2
• In pgm2.c add #define for J1, J2, NYDIM similar to I1, I2, NXDIM.
• Change BC_WIDTH to 2 or 3 (3 if planning to do extra-credit)
• Implement 2D arrays! s1, s2, strue arrays will be [NXDIM][NYDIM] & and have ghost points

o Remember later in the class, NXDIM will not equal NYDIM.
o add 2-D velocity arrays u and v – neither will have any ghost points – remember staggering!!
o change your pgm2.c call to advection() to also pass velocity arrays u, v.

• Implement your 2-D initial condition inside ic(), plot it, compare to mine.
• Implement your 2-D 0-gradient boundary conditions inside bc().
• Copy advection.c to advect1d.c advect1d.c is most easily started as a copy of pgm1’s advection.c!

o Make the changes to advect1d shown in the previous slide: no “c” variable, pass a
1-D u1d (or velocity1D or whatever you call it) array containing the 1D flow speed.

o Move courant number math inside your Lax-Wendroff loop as shown on prior slide.
• Change advection.c : Make old s1, s2 arrays to be 2-D, add 2-D velocity arrays, add new

1-D arrays, pass 1-D slices of s1 and of velocity to advect1d.
• Try pgm2 first by doing 2D contour plots every time step.

2/6/19 ATMS 502 / CSE 566 4

*If you haven’t already started. This
makes a complete copy of one folder
(pgm1) and puts it in the other (pgm2).

Program 1 – overview – Fortran 90

• Global_data module:

contains these variables -

• grid dimension nx

• grid spacing dx

• flow speed c

• history array()

• 1D arrays:

o s1, s2, strue

• calls ic to set s1, bc to set periodic BCs

• calls the advection() routine:

o passes only dt and advection_type to advection

• advection() routine: does all the “work”
o advection() does “USE global_data” for 1D arrays

o there is only (1-D) X-advection here

o can set courant number before do-loop:

§ courant = dt/dx*c (since c = constant)

o uses Lax-Wendroff scheme , 1-D loop 1…nx
§ s1d_out(i) = s1d_in(i) – courant * …

2/6/19 ATMS 502 / CSE 566 5

-- Program 1 and its subroutines do this --

loop

main pgm

time loop

BC

advection

until
done

stats,

plots

Program 2 – changes in bold! – Fortran 90

• Global_data module:
contains these variables -

• grid dimension nx
• add: grid dim ny
• grid spacing dx
• flow speed c
• history array()
• now 2d arrays:

o s1, s2, strue
• add 2d arrays:

o u, v flow arrays

• calls ic to set 2-D s1, bc to set 0-gradient BCs
• calls the (now 2-D) advection() routine:

o passes only dt and advection_type to advection
• advection() routine: now handles 2D+1D arrays

o advection() still does “USE global_data” for 2D arrays
o declare new 1-D arrays s1d_in(), s1d_out(), u1d()
o for X & Y advection: copy S1 & U-or-V to s1d_in(), u1d(),

pass 1D arrays to advect1d, copy s1d_out back to s1()

• advect1d() routine: start this with copy of old advection routine!

o do Not “USE global_data” here! everything passed
o uses Lax-Wendroff scheme , (still) 1-D loop 1…nx

§ set courant number inside do-loop:
courant = dt/dx*0.5*(u1d(i)+u1d(i+1))

§ s1d_out(i) = s1d_in(i) – courant * …
2/6/19 ATMS 502 / CSE 566 6

--delete--
these vars!

-- Program 2 and its subroutines do this --

loop

main pgm
time loop

BC

advection

until
done

advect1d
1-

D
da

ta

stats,
plots

actual “work” is
done by advect1d.
advection just
moves data!

Program 2 – summary – Fortran90
• Make a copy* of your pgm1 folder and call it pgm2: cp -R pgm1 pgm2
• In global_data.f90:

o add 2nd dimension “ny”, set equal to nx. later in the semester nx will not equal ny!
o make scalar arrays 2D! s1, s2, strue arrays will be (-2:nx+3,-2:ny+3) if you use 3 ghost points
o add 2-D velocity arrays u and v – neither will have any ghost points – remember staggering!!

• Implement your 2-D initial condition inside ic(), plot it, compare to mine.
• Implement your 2-D 0-gradient boundary conditions inside bc().
• Copy advection.f90 to advect1d.f90 advect1d.f90 is most easily started as a copy of pgm1’s advection.f90!

o Make the changes to advect1d shown in the previous slide: no “c” variable, pass a
1-D u1d (or velocity1D or whatever you call it) array containing the 1D flow speed.

o Move courant number math inside your Lax-Wendroff loop as shown on prior slide.

• Change advection.f90 : Change s1, s2 arrays to be 2-D, add 2-D velocity arrays,
add new 1-D arrays, pass 1-D slices of s1 and of velocity to advect1d.

• Try pgm2 first by doing 2D contour plots every time step.

2/6/19 ATMS 502 / CSE 566 7

*If you haven’t already started. This

makes a complete copy of one folder

(pgm1) and puts it in the other (pgm2).

Either language: 2-D Advection routine

• Advecting rows (X)
o Loop over all rows (2nd dimension, j)

§ Loop over all columns i with ghost points
ü copy s1(i,j) to s1d_in

§ Loop over all columns i=1,nx+1
ü copy u(i,j) to u1d

§ call advect1d
ü pass s1d_in, u1d to advect1d
ü advect1d returns updated s1d_out

§ Loop over all columns i =1,nx
ü copy s1d_out to s1(i,j)

2/6/19 ATMS 502 - Spring 2019 8

all j (rows) all i (columns)

I call the first dimension (columns) “i” and 2nd dimension “j” (rows). You don’t have to do that if you prefer a different convention!!

(no
ghost
points)

(no
ghost
points)

• Advecting columns (Y)
o Loop over all columns (1st dim., i)

§ Loop over all rows j with ghost points
ü copy s1(i,j) to s1d_in

§ Loop over all rows j=1,ny+1
ü copy v(i,j) to u1d

§ call advect1d
ü pass s1d_in, u1d to advect1d
ü advect1d returns updated s1d_out

§ Loop over all rows j =1,ny
ü copy s1d_out to s1(i,j)

(no
ghost
points)

(no
ghost
points)

Since nx=ny, you can use s1d_in, s1d_out, u1d for both X- and Y- data slices. Later when nx, ny differ, you declare based on the larger dimension.

