Computer Problems 5 and 6

2-D and 3-D nonlinear quasi-compressible flow

Description: Program 5 ("P5") is 2-D. Program 6 ("P6") is fully 3-D.
Due: Program 5 is due Tuesday April 16. Pgm 6 is due during finals week.
Equations for program 6 (3-D) follow. For program 5, ignore/omit all \boldsymbol{v} terms and \boldsymbol{y}-derivatives.

A. Equations

Program 6 has 5 unknowns: horizontal flow components (u and $v, \mathrm{~m} \mathrm{~s}^{-1}$), vertical flow ($w, \mathrm{~m} \mathrm{~s}^{-1}$), potential temperature $(\theta$, deg. K), and perturbation pressure (p ', $P a$). The base-state time-invariant density ($\bar{\rho}, \mathrm{g} \mathrm{kg}^{1}$) and temperature $(\bar{\theta})$ are functions of height only. The quasi-compressible set has "pseudo" sound waves traveling at speed c_{s}; the pressure approaches an anelastic solution (Droegemeier and Wilhelmson 1987, J. Atmos. Sci., p. 1187). The continuous form with advection, diffusion, pressure, \& buoyancy:

u-momentum:	$u_{t}=-u u_{x}-v u_{y}-w u_{z}-\frac{1}{\bar{\rho}} p_{x}^{\prime}+K\left(u_{x x}+u_{y y}+u_{z z}\right)$
$v-$-momentum: (program 6 only)	$v_{t}=-u v_{x}-v v_{y}-w v_{z}-\frac{1}{\bar{\rho}} p_{y}^{\prime}+K\left(v_{x x}+v_{y y}+v_{z z}\right)$
$w-m o m e n t u m: ~$ $\left(\theta^{\prime}=\theta-\bar{\theta}\right)$	$w_{t}=-u w_{x}-v w_{y}-w w_{z}-\frac{1}{\bar{\rho}} p_{z}^{\prime}+g \frac{\theta^{\prime}}{\bar{\theta}}+K\left(w_{x x}+w_{y y}+w_{z z}\right)$
Perturbation pressure:	$p_{t}^{\prime}=-c_{s}^{2}\left(\bar{\rho} \frac{\partial u}{\partial x}+\bar{\rho} \frac{\partial v}{\partial y}+\frac{\partial}{\partial z}(\bar{\rho} w)\right)$
θ (pot.temperature):	$\theta_{t}=-(u \theta)_{x}-(v \theta)_{y}-(w \theta)_{z}+\theta\left(u_{x}+v_{y}+w_{z}\right)+K\left(\theta_{x x}+\theta_{y y}+\theta_{z z}^{\prime}\right)$

The discrete equations use forward time differencing for θ, and centered for $\mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{p}$:

u:	
$\left\|\begin{array}{l} v: \\ (P 6) \end{array}\right\|$	
$w:$	$\delta_{2 t} w=-{\overline{\left(\bar{u}^{z} \delta_{x} w\right)_{(n)}}}_{x}^{x}-{\overline{\left(\bar{v}^{z} \delta_{y} w\right)_{(n)}}}_{y}^{y}-\overline{\left(\bar{w}^{z} \delta_{z} w\right)_{(n)}^{z}}-\frac{1}{\overline{(\bar{\rho})}} \delta_{z} p_{(n-1)}^{\prime}+g \overline{\left(\frac{\theta^{\prime}}{\bar{\theta}}\right)_{(n)}^{z}}$ (Note $\theta^{\prime} \equiv \theta-\bar{\theta}$) $+K_{m}\left(\delta_{x x} w+\delta_{y y} w+\delta_{z z} w\right)_{(n-1)}$
p^{\prime} :	$\delta_{2 t} p^{\prime}=-c_{s}^{2}\left[\bar{\rho} \delta_{x} u_{(n+1)}+\bar{\rho} \delta_{y} v_{(n+1)}+\delta_{z}\left\{\overline{\left.\left.(\bar{\rho})^{z} w_{(n+1)}\right\}\right]}\right.\right.$ (cs is the fixed sound speed)
θ :	P5: PL advection, plus 2-D diffusion. P6: Strang splitting + 3-D diffusion: $\left[F_{x}\left(\frac{\Delta t}{2}\right)\right]\left[F_{y}\left(\frac{\Delta t}{2}\right)\right]\left[F_{z}(\Delta t)\right]\left[F_{y}\left(\frac{\Delta t}{2}\right)\right]\left[F_{x}\left(\frac{\Delta t}{2}\right)\right]+K_{\theta}\left(\delta_{x x} \theta+\delta_{y y} \theta+\delta_{z z} \theta^{\prime}\right)_{(n)}$

u, v, w advection follow the (unsplit) "box method," not to be confused with the implicit scheme of the same name. Pressure and diffusion terms are lagged (at time $n-1$). θ is advected with Lax-Wendroff or piecewise linear methods. Note: time levels, averaging!

B. Grid layout and boundary conditions

- Dimensions:
- Use $\Delta x=\Delta z$; grid spacing, dimensions to be announced.
- We will do test cases at coarse resolution, e.g. 200 m or larger.
\circ physical dimensions are no longer from (-.5,-.5) to $(+.5,+.5)$
- x coordinates (for $\left.\theta, \mathrm{p}^{\prime}\right)=\Delta \mathrm{x} / 2+\Delta \mathrm{x}(\mathrm{i}-1), \mathrm{i}=1 \ldots \mathrm{nx}$ (Fortran)
- bottom-left corner θ, p^{\prime} are at $(\mathrm{x}=\Delta x / 2, \mathrm{z}=\Delta z / 2)$
- w (at $\mathrm{k}=1$ in Fortran, $\mathrm{k}=\mathrm{K} 1$ in C) is at $\mathrm{z}=0$
- u (at $\mathrm{i}=1$ in Fortran, $\mathrm{i}=\mathrm{I} 1$ in C) is at $\mathrm{x}=0$
- Top, bottom boundaries:
- free slip (no drag on u); rigid lids ($\mathrm{w}=0$ at $\mathrm{k}=1$ and $\mathrm{k}=\mathrm{nz}+1$ in Fortran)
- 0 -gradient for all variables; any variable $\xi(k=0)=\xi(\mathrm{k}=1$, Fortran $)$, etc.
- Lateral (x) boundaries: symmetry boundaries shown with dashed yellow lines
- $\mathrm{u}(1)=-\mathrm{u}(2) \quad \mathrm{u}(\mathrm{nx}+1)=-\mathrm{u}(\mathrm{nx}) \quad$ (Fortran indices here)
- $\theta(0)=\theta(2) \quad \theta(n \mathrm{x}+1)=\theta(\mathrm{nx}-1)$ (same for w, p ')
- Lateral (y) boundaries: (program 6, only)
- Y boundaries are periodic. Consider the periodic boundary to sit at the V wind locations for $\mathrm{j}=1$ and $\mathrm{j}=\mathrm{ny}+1$.
- You will only integrate V from 1:ny (Fortran indices); the value of V at ($n y+1$) will always be set equal to V at $\mathrm{j}=1$.
- Other variables are periodic in Y as $\xi(\mathrm{ny}+1)=\xi(1)$, etc.

C. Initial conditions (base state)

- First you must define the base state vertical profiles for density $\bar{\rho}$ and basestate potential temperature $\bar{\theta}$. You only save $\bar{\rho}$ for later use; other variables ($\mathrm{z}, \mathrm{P}, \mathrm{T}$) are used only to calculate $\bar{\rho}$. There is no need to save $\mathrm{T}(\mathrm{z})$ and $\mathrm{P}(\mathrm{z})$.
- The first vertical velocity level, w at Fortran k=1, is at $\mathrm{z}=0$ consistent with our C-grid staggering.
- In the expressions below, z refers to the height at a θ and p ' level. The notation given is for Fortran.

$$
\left.\begin{array}{l}
z(k)=\frac{\Delta z}{2}+\Delta z(k-1) \\
\bar{T}(z)=300.0-\frac{g}{c_{p}} z \\
\bar{P}(z)=P_{0}(\bar{T} \overline{\bar{\theta}})^{c_{p} / R_{d}} \\
\bar{\rho}(z)=\frac{\bar{P}}{R_{d} \bar{T}}
\end{array}\right\} \text { where }\left\{\begin{array}{l}
z=\text { height }(\mathrm{m}) \text { of } \theta, u, p^{\prime} \text { levels } \\
\bar{\theta}(z)=300 K=(\text { constant }) \text { potential temperature } \\
g=9.81 \mathrm{~ms}^{-2}=\text { gravity } \\
\mathrm{c}_{\mathrm{p}}=1004 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}=\text { specific heat at constant pressure } \\
R_{d}=287 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}=\text { dry air gas constant } \\
\mathrm{P}_{0}=10^{5} \mathrm{~Pa}=\text { standard pressure at sea level } \\
\bar{\rho}=\operatorname{density}\left(\mathrm{kg} \mathrm{~m}^{-3}\right) \text { at } \theta, \mathrm{u}, \mathrm{p}^{\prime} \text { levels }
\end{array}\right.
$$

Check your initial state with this data for $\Delta \mathrm{z}=100 \mathrm{~m}$, at (Fortran) $\mathbf{k}=\mathbf{1 1}, \mathrm{z}=1050 \mathrm{~m}$:

- $\mathrm{P}=88540 \mathrm{~Pa}$
- $\mathrm{T}=289.74 \mathrm{~K}$
- $\rho_{\text {ulevel }}=1.065 \mathrm{~g} \mathrm{~kg}^{-1}, \rho_{w_{\text {level }}}=1.069 \mathrm{~g} \mathrm{~kg}^{-1}$.
- Note you compute ρ_{u} level as above, and average in height to get ρ_{w} level; this

- ρ_{w} level at $\mathrm{k}=1$ can have any value; it is only used where multiplied by w , and $\mathrm{w}_{\text {ground }}=0$.

D. Initial conditions (perturbation potential temperature and \mathbf{u}, \mathbf{w})

Program 5: The solution evolves from an initial state with zero mean flow $\mathrm{U}(\mathrm{z})$ and constant potential temperature (θ). We begin with temperature perturbations: where θ^{\prime} is warm (cool) the air will rise (sink). The initial u, w, and p ' are zero. For θ, use:

$$
\theta_{i, k}=\bar{\theta}+\sum_{m=1}^{2}\left[\Delta \theta_{m}^{\prime} \frac{\cos \left(r_{m} \pi\right)+1}{2} \text { if } r_{m} \leq 1, \text { else } 0\right], r_{m}=\sqrt{\left(\frac{x_{i}-x_{0}(m)}{\text { xradius }}\right)^{2}+\left(\frac{z_{k}-z_{0}(m)}{\text { zradius }}\right)^{2}}
$$

so $\theta(\mathrm{i}, \mathrm{k})$ at time $\mathrm{t}=0$ equals the base state (constant) $\bar{\theta}$ plus any perturbation $\Delta \theta^{\prime}(\mathrm{m})$, for up to two initial temperature perturbations $m=1,2$.

Structure your IC code for setting up θ like that given below. The example code is for program 6, in 3-D; simplify appropriately for program 5:
distance / radius calculations for initial condition of programs 5, 6

Fortran	C requires <math.h>
	```for (i=I1; i<=I2; i++) \{ for (j=J1; j<=J2; j++) \{ for ( \(k=K 1\); \(k<=K 2 ; k++\) ) \{ \(x=d x / 2.0+d x *(f l o a t)(i-I 1) ;\) \(y=d x / 2.0+d x *(f l o a t)(j-J 1) ;\) \(z=d x / 2.0+d x *(f l o a t)(k-K 1) ;\) for ( \(m=0\); \(m<2\); \(m++\) ) \{ rm \(=\) sqrt \((\) pow ( ( \(\mathrm{x}-\mathrm{x} 0[\mathrm{~m}]) / \mathrm{xradius}[\mathrm{m}], 2.0)\) +pow ( \((\mathrm{y}-\mathrm{y} 0[\mathrm{~m}]) / \mathrm{yradius}[\mathrm{m}], 2.0)\) +pow ((z-z0[m])/zradius[m],2.0)); if (rm <= 1.0) \{ /* your \(\theta\) code here */ \} /* rm */ \} /* m */```
```! ...your 0 code here... endif enddo (+3 more enddo's)```	$\begin{aligned} & \text { \} /* k */ } \\ & \} / \star j^{*} / \\ & \} \text { /* i */ } \end{aligned}$

These two thermal perturbations $\Delta \theta^{\prime}$ have different center (x, z) coordinates. The xand z-"radius" may vary between perturbations, so you must store two sets of "radii" .

Program 6, only: In P6, perturbations have 3-D center positions (x,y,z). You will also create perturbations to the \mathbf{v} flow component, using the same code as for θ :
$\left.\begin{array}{|l}\theta_{i, j, k}=\bar{\theta}+\sum_{m=1}^{2}\left[\Delta \theta_{m}^{\prime} \frac{\cos \left(r_{m} \pi\right)+1}{2} \text { if } r_{m} \leq 1, \text { else } 0\right] \\ v_{i, j, k}=\quad \sum_{m=1}^{2}\left[\Delta v_{m} \frac{\cos \left(r_{m} \pi\right)+1}{2} \text { if } r_{m} \leq 1, \text { else } 0\right]\end{array}\right] r_{m}=\sqrt{\left(\frac{x_{i}-x_{0}(m)}{\text { xradius }_{m}}\right)^{2}+\left(\frac{y_{j}-y_{0}(m)}{\text { yradius }_{m}}\right)^{2}}$

Calculate r_{m} for each point ($\mathrm{i}, \mathrm{j}, \mathrm{k}$), and use it in the computation of both perturbation θ and v -wind (ignore staggered grid positions in doing so; use the same r_{m} value, code).

In program 6, we also utilize random initial \mathbf{u} values, up to +/-(upertur/2). Use the default Intel Fortran/C random number generator. Here is sample code:

Fortran	C requires <math.h>
real upertur, rand	float upertur;
call srand (0.0)	srand (0.0); /* seed */
do $k=1, n z$	for (i=I1+1; i<=I2; i++) \{
do j = 1, ny	for (j=J1; j<=J2; j++) \{
do $i=1, n x+1$	for (k=K1; k<=K2; $k++$) \{
ul (i,j,k) = \&	u1[i][j][k] = upertur * (
(rand (0)-0.5) *upertur enddo	```(float)rand()/(RAND_MAX + 1.0)) - upertur*0.5;```
enddo	\}
enddo	\} \}

E. Code layout

The code layout guidelines include those from past programs plus the following:

- Do not put your integration (advection, diffusion, pressure gradient, buoyancy, initialization...) steps in your main program; put each in a separate subroutine. You must also use (to build your program) and submit (for grading) a makefile.
- Read in from the keyboard or a file, or use via a Fortran namelist:
- times to plot (or, a plotting interval) • temperature perturbations and their center locations (x, z or $\mathrm{x}, \mathrm{y}, \mathrm{z}$) • diffusion coefficients K_{m} and $\mathrm{K}_{\text {theta }}$.
- Use ghost zones as before, as needed for the numerical schemes being applied.
- Set up the initial conditions (1-D for density, and 2-D or 3-D fields) entirely in one subroutine. Plot the initial potential temperature perturbation $(\theta-\bar{\theta})$.
- You must put common processes for different variables in the same subroutines: advection (u, w, θ) (with 1-D advection still handled by a separate 1D routine); diffusion (u,w, θ), and pressure gradient force/buoyancy (u, w, p ').
- Your main program must ONLY read input data, print out information as desired and call subroutines. All other code must be in subroutines for full credit.
- Remember $w=0$ at the top and bottom levels ($\mathrm{k}=1$ and $\mathrm{k}=\mathrm{nz}+1$ in Fortran). So you do z mixing for w only from $\mathrm{k}=2: \mathrm{nz}$ (in Fortran).
- Don't evolve u outside of the symmetry boundaries; compute $\mathrm{u}(2 \ldots \mathrm{nx})$ and then determine $u(1)$ and $u(n x+1)$ using the (a)symmetric boundary conditions.
- For pressure, first compute new values for u and w at time level $(\mathrm{n}+1)$. Then update the pressure from $(\mathrm{n}-1)$ to $(\mathrm{n}+1)$ using $\mathrm{u}^{(\mathrm{n}+1)}$ and $\mathrm{w}^{(\mathrm{n}+1)}$ to get $\mathrm{p}^{(\mathrm{n}+1)}$.
- The order of computation is: advection (u, w, θ); diffusion, and pressure terms.
- Use a forward time step to start the integration (there is a short cut we'll discuss).
- Program 6 only: For full credit, you must make a reasonable attempt at parallelizing your code, and part of your grade also requires visualization.

F. Plotting

Program 5: plot contours as usual. We will not use surface plotting.
Program 6: You will not be calling plot routines directly from your program \#6. Doing so is slow and wasteful considering how long your programs will (at full resolution) take to rerun. Instead, you will call C or Fortran routine putfield (provided to you) to write your output to disk in a unformatted binary file. Use program plot3d to read this file and to make any number of plots (X-Y, Y-Z, X-Z slices, or 3-D). See the class web page for details. These routines, program plot $3 d$ and demonstration programs will be available on stampede at $\sim \operatorname{tg} 457444 / 502 / P g m 6$. Required plots will be listed on the class web site.

G. Hints

- Do initial testing at reduced resolution, e.g. $\Delta \mathrm{x}=\Delta \mathrm{z}=200 \mathrm{~m}, \Delta \mathrm{t}=0.5 \mathrm{~s}$.
- In testing (for Fortran), do early tests compiling with subscript checking: -g-check all-traceback.
- Beware! NX $\neq \mathbf{N Z}$ here. Think where you have used NX=NZ in programs 2-4.
- For \min / max stats and plotting, average u and w to θ / p locations; and plot $(\theta-\bar{\theta})$
- We are using forward time differencing for θ advection, and centered time for everything else. So, $\delta_{2} \mathrm{u}$ means $\mathrm{u} 3=\mathrm{u} 1+2 \Delta \mathrm{t}^{*}(\ldots) ; \theta$ advection is forward in time, so only two arrays are needed [handled as in programs 2-4].

H. Checking your code

There are various checks you could carry out to test parts of your code. Some tests you could perform include:

1. Linear advection: observe movement of θ^{\prime} field with constant u and/or w fields while disabling diffusion, buoyancy and pressure gradient terms.
2. 1-D: reduce two-dimensional initial condition to 1-D (e.g. let θ, u , or w vary as $\sin (\mathrm{x})$) for advection tests.
3. Diffusion only: disable advection, buoyancy and pressure gradient terms, and damp only θ or some pre-determined function of u or w.
4. Pressure gradient and buoyancy terms, only: disable advection and diffusion, and integrate using the pressure gradient terms (influences u, w), buoyancy term (influences w), and the pressure field update itself (from gradients in u, w). In this test, the θ field stays constant with time, and a circulation develops in the u and w fields. This is a particularly useful test. The sequence of evolution to look for is:
a. The temperature perturbation θ^{\prime} leads to vertical acceleration, changing w
b. The new, nonzero w field creates pressure gradients (from $\partial \mathrm{w} / \partial \mathrm{z}$)
c. The pressure gradients lead to horizontal acceleration, changing u
5. Look for symmetry in your solutions. For example, an initial temperature perturbation placed at the very center of the domain will lead to minima and maxima of opposite sign in u; this should remain true as your solution evolves.
a. But: the symmetry is in x ; comparable symmetry will not occur in z due to the density variation with height.

I. Visualization (program 6 only)

Use program plot3d, provided to you, to produce the necessary contour plots. Beyond this, part of the program grade (see below) involves creating a few 3-D plots with the visualization tools vis5d or VisIt. plot3d can convert your simulation output to the necessary format. See the class web site for details.

Following is a broad description of how my program is coded.

1. MAIN PROGRAM a. read in parameters; call IC b. plot initial condition c. call MAXMIN d. call $\boldsymbol{B C}$ e. \quad set tstep $=\Delta t$ f. TIME LOOP: $n=1$,max_steps - \quad set $\mathrm{u} 3=\mathrm{u} 1, \mathrm{w} 3=\mathrm{w} 1, \mathrm{t} 2=\mathrm{t} 1$ - call ADVECT - call DIFFUSION - call PGF - array update - if $(\mathrm{n}=1)$ set tstep $=2 \Delta \mathrm{t}$ - call BC - call MAXMIN - if desired time: PLOT g. END OF TIME LOOP h. plot time traces	NOTES Always plot $\boldsymbol{\theta}$, not total $\boldsymbol{\theta}$ Find min, max of all fields Set ghost points for first time step Because your first step is a forward one Array copy helps start this time step. Advection of $\boldsymbol{\theta}, \mathrm{u}$, and w . Mix: \mathbf{u}, w, and $\boldsymbol{\theta}$ (note: in general $K_{m} \neq K_{\text {theta }}$) Obtain u3,w3; get new p3 This is the usual array switch between old, new time levels. There are three time levels for $\mathrm{u}, \mathrm{w}, \mathrm{p}$, and two for $\boldsymbol{\theta}$. But: if first step, don't update $\mathrm{u} 1, \mathrm{w} 1$, or p 1 . Switch from forward to centered time for u, w, p. Get BCs ready for next time step. \ldots also store \max / min info for later use. Call contour routine for $\mathrm{u}, \mathrm{w}, \boldsymbol{\theta}$, and p .. using $\min / \mathrm{max} u / w / \theta$ I have already stored
2. IC ROUTINE a. compute 1D arrays b. \quad set $p^{\prime}, u, w=0$ (in program 6, we set v using perturbations, and set \boldsymbol{u} to random numbers; u is nonzero in P6!) c. set $\boldsymbol{\theta}$ based on handout.	Compute constants and 1D arrays here. includes $\operatorname{density}(\mathrm{z})$ at $\boldsymbol{\theta}$ and w levels Do this for (n) and ($\mathrm{n}-1$) variables; this is part of preparing for the first, forward time step (hence tstep is first set to Δt, and later to $2 \Delta t$) Remember you read in the temperature perturbations and their locations
3. BC ROUTINE a. 0-gradient top, bottom b. w, $\boldsymbol{\theta}$, and p^{\prime} are same on either side of symmetry boundary c. Anti-symmetry for u	$\begin{aligned} & \text { So } u(i, n z+1)=u(i, n z) \\ & \text { So } p(0, k)=p(2, k) \text {, } \\ & \quad p(n x+1, k)=p(n x-1, k) \\ & \text { So } u(1, k)=-u(2, k), u(0, k)=-u(3, k) \end{aligned}$
4. ADVECT ROUTINE a. $\boldsymbol{u}: \mathrm{u} 3=\mathrm{u} 3+$ tstep*(box terms) b. $\boldsymbol{w}: \mathrm{w} 3=\mathrm{w} 3+$ tstep* (box terms) c. θ advection as usual (old "integrate" code)	Recall u,w,p have centered time derivatives. For program 6, do v advection here, too. Piecewise linear advection.
5. DIFFUSION ROUTINE a. $\mathrm{u} 3=\mathrm{u} 3+$ tstep* $(\mathrm{x}, \mathrm{z}$ mixing terms) b. $\mathrm{w} 3=\mathrm{w} 3+$ tstep* $(\mathrm{x}, \mathrm{z}$ mixing terms $)$ c. $\operatorname{Mix} \theta \ldots$	For program 6, do \boldsymbol{v} diffusion, too. W is always zero at $\mathrm{k}=1$ and at $\mathrm{k}=\mathrm{nz}+1$
6. PGF SUBROUTINE a. u3 = u3- tstep*(pgf terms) b. $\mathrm{w} 3=\mathrm{w} 3-$ tstep $^{*}(\mathrm{pgf}$ terms $)$ + tstep*(buoyancy terms) c. set u, w BCs (could call $B C$, or set here) d. $\mathrm{p} 3=\mathrm{p} 1-(\mathrm{pgft}$ terms $)$	Pressure gradient / buoyancy routine. Adding to the u3 array. Adding to the w3 array. Remember $\mathrm{w}=0$ at $\mathrm{k}=1$ and $\mathrm{k}=\mathrm{nz}+1$ Get ready for derivatives in p equation pgf terms use new u, w at time ($\mathrm{n}+1$)

