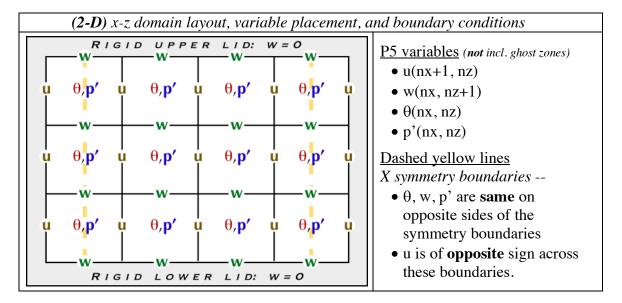
<u>Computer Problems 5 and 6</u> **2-D and 3-D nonlinear quasi-compressible flow**

Description: Program 5 ("P5") is 2-D. Program 6 ("P6") is fully 3-D. **Due**: Program 5 is due Tuesday April 16. Pgm 6 is due during finals week. *Equations for program 6 (3-D) follow. For program 5, ignore/omit all v terms and y-derivatives.*

A. Equations

Program 6 has 5 unknowns: horizontal flow components (u and v, m s⁻¹), vertical flow (w, m s⁻¹), potential temperature (θ , deg. K), and perturbation pressure (p', Pa). The *base-state* time-invariant density (\overline{p} , g kg⁻¹) and temperature ($\overline{\theta}$) are functions of height only. The quasi-compressible set has "pseudo" sound waves traveling at speed c_s; the pressure approaches an anelastic solution (Droegemeier and Wilhelmson 1987, *J. Atmos. Sci.*, p. 1187). The <u>continuous</u> form with advection, diffusion, pressure, & buoyancy:


u-momentum:	$u_{t} = -uu_{x} - vu_{y} - wu_{z} - \frac{1}{\overline{\rho}}p'_{x} + K(u_{xx} + u_{yy} + u_{zz})$
v-momentum: (program 6 only)	$v_{t} = -uv_{x} - vv_{y} - wv_{z} - \frac{1}{\overline{\rho}}p_{y}' + K(v_{xx} + v_{yy} + v_{zz})$
<i>w-momentum:</i> $(\theta' = \theta - \overline{\theta})$	$w_{t} = -uw_{x} - vw_{y} - ww_{z} - \frac{1}{\overline{\rho}}p_{z}' + g\frac{\theta'}{\overline{\theta}} + K\left(w_{xx} + w_{yy} + w_{zz}\right)$
Perturbation pressure:	$p'_{t} = -c_{s}^{2} \left(\overline{\rho} \frac{\partial u}{\partial x} + \overline{\rho} \frac{\partial v}{\partial y} + \frac{\partial}{\partial z} (\overline{\rho} w) \right)$
θ (pot. temperature):	$\theta_{t} = -(u\theta)_{x} - (v\theta)_{y} - (w\theta)_{z} + \theta(u_{x} + v_{y} + w_{z}) + K(\theta_{xx} + \theta_{yy} + \theta'_{z})$

The <u>discrete</u> equations use *forward* time differencing for θ , and *centered* for u, v, w, p:

$$\begin{aligned} u: \quad \delta_{2t}u &= -\overline{\left(\overline{u}^{x}\delta_{x}u\right)_{(n)}^{x}} - \overline{\left(\overline{v}^{x}\delta_{y}u\right)_{(n)}^{y}} - \overline{\left(\overline{w}^{x}\delta_{z}u\right)_{(n)}^{z}} - \frac{1}{\overline{\rho}}\delta_{x}p_{(n-1)}' + K_{m}\left(\delta_{xx}u + \delta_{yy}u + \delta_{zz}u\right)_{(n-1)}}{\delta_{zt}v = -\overline{\left(\overline{u}^{y}\delta_{x}v\right)_{(n)}^{x}} - \overline{\left(\overline{v}^{y}\delta_{y}v\right)_{(n)}^{y}} - \overline{\left(\overline{w}^{y}\delta_{z}v\right)_{(n)}^{z}} - \frac{1}{\overline{\rho}}\delta_{y}p_{(n-1)}' + K_{m}\left(\delta_{xx}v + \delta_{yy}v + \delta_{zz}v\right)_{(n-1)}}{\delta_{zt}v = -\overline{\left(\overline{u}^{z}\delta_{x}w\right)_{(n)}^{x}} - \overline{\left(\overline{v}^{z}\delta_{y}w\right)_{(n)}^{y}} - \overline{\left(\overline{w}^{z}\delta_{z}w\right)_{(n)}^{z}} - \frac{1}{\overline{\rho}}\delta_{z}p_{(n-1)}' + g\overline{\left(\frac{\overline{\theta}'}{\overline{\theta}}\right)_{(n)}^{z}}}{(Note \ \theta' = \theta - \overline{\theta})} + K_{m}\left(\delta_{xx}w + \delta_{yy}w + \delta_{zz}w\right)_{(n-1)}} \\ p': \quad \delta_{2t}p' = -c_{s}^{2}\left[\overline{\rho}\delta_{x}u_{(n+1)} + \overline{\rho}\delta_{y}v_{(n+1)} + \delta_{z}\left\{\overline{\left(\overline{\rho}\right)}^{z}w_{(n+1)}\right\}\right] \qquad (c. is the fixed sound speed)} \\ \theta: \quad \left[F_{x}\left(\frac{\Delta t}{2}\right)\right]\left[F_{y}\left(\frac{\Delta t}{2}\right)\right]\left[F_{z}\left(\Delta t\right)\right]\left[F_{y}\left(\frac{\Delta t}{2}\right)\right]\left[F_{x}\left(\frac{\Delta t}{2}\right)\right] + K_{\theta}\left(\delta_{xx}\theta + \delta_{yy}\theta + \delta_{zz}\theta'\right)_{(n)}}\right] \end{aligned}$$

Computer problems 5 and 6

u, *v*, *w* advection follow the (unsplit) "box method," not to be confused with the implicit scheme of the same name. Pressure and diffusion terms are lagged (at time *n*-1). θ is advected with Lax-Wendroff or piecewise linear methods. *Note:* time levels, averaging!

B. Grid layout and boundary conditions

- Dimensions:
 - Use Δx=Δz; grid spacing, dimensions to be announced.
 We will do *test cases* at coarse resolution, e.g. 200m or larger.
 - physical dimensions are **no longer** from (-.5, -.5) to (+.5, +.5)
 - x coordinates (for θ , p') = $\Delta x/2 + \Delta x(i-1)$, i=1...nx (*Fortran*)
 - o bottom-left corner θ , p' are at (x= $\Delta x/2$, z= $\Delta z/2$)
 - w (at k=1 in Fortran, k=K1 in C) is at z=0
 - u (at i=1 in Fortran, i=I1 in C) is at x=0
- Top, bottom boundaries:
 - free slip (no drag on *u*); rigid lids (w=0 at k=1 and k=nz+1 *in Fortran*)
 - 0-gradient for all variables; any variable $\xi(k=0) = \xi(k=1, Fortran)$, etc.
- Lateral (x) boundaries: symmetry boundaries shown with dashed yellow lines
 - \circ u(1) = -u(2) u(nx+1) = -u(nx) (Fortran indices here)
 - $\circ \quad \theta(0) = \theta(2) \qquad \quad \theta(nx+1) = \theta(nx-1) \text{ (same for w,p')}$
- Lateral (y) boundaries: (*program 6, only*)
 - Y boundaries are *periodic*. Consider the periodic boundary to sit at the <u>V wind locations</u> for j=1 and j=ny+1.
 - You will only integrate V from 1:ny (*Fortran indices*); the value of V at (ny+1) will always be set equal to V at j=1.
 - Other variables are periodic in Y as $\xi(ny+1) = \xi(1)$, etc.

C. Initial conditions (base state)

- First you must define the *base state vertical profiles* for density *ρ* and base-state potential temperature *θ*. You only save *ρ* for later use; other variables (z, P, T) are used only to calculate *ρ*. There is no need to save T(z) and P(z).
- The first vertical velocity level, w at *Fortran* k=1, is at z=0 consistent with our *C-grid* staggering.
- In the expressions below, z refers to the height at a θ and p' level. The notation given is for Fortran.

$$\begin{aligned} z(k) &= \frac{\Delta z}{2} + \Delta z(k-1) \\ \overline{T}(z) &= 300.0 - \frac{g}{c_p} z \\ \overline{P}(z) &= P_0 \left(\frac{\overline{T}}{\overline{\theta}}\right)^{c_p/R_d} \\ \overline{\rho}(z) &= \frac{\overline{P}}{R_d \overline{T}} \end{aligned} \right\} where \begin{cases} z = \text{height (m) of } \theta, u, p' \text{ levels} \\ \overline{\theta}(z) &= 300K = (\text{constant}) \text{ potential temperature} \\ g &= 9.81 \text{ ms}^{-2} = \text{gravity} \\ c_p &= 1004 \text{ J kg}^{-1}\text{K}^{-1} = \text{specific heat at constant pressure} \\ R_d &= 287 \text{ J kg}^{-1}\text{K}^{-1} = \text{dry air gas constant} \\ P_0 &= 10^5 \text{ Pa} = \text{standard pressure at sea level} \\ \overline{\rho} &= \text{density} (kg \ m^{-3}) \text{ at } \theta, u, p' \text{ levels} \end{aligned}$$

<u>Check your initial state</u> with this data for $\Delta z=100$ m, at (Fortran) k=11, z=1050m:

- P=88540 Pa
- T=289.74 K
- $\rho_{u \ level} = 1.065 \text{ g kg}^{-1}, \ \rho_{w \ level} = 1.069 \text{ g kg}^{-1}.$
- Note you compute $\rho_{u \ level}$ as above, and average in height to get $\rho_{w \ level}$; this is why $\rho_{w \ level}$ is written as $\overline{(\overline{\rho})}^{z}$ on page 1.
- $\rho_{w \ level}$ at k=1 can have any value; it is only used where multiplied by w, and $w_{ground} = 0$.

D. Initial conditions (perturbation potential temperature and u, w)

Program 5: The solution evolves from an initial state with *zero* mean flow U(z) and *constant* potential temperature (θ). We begin with temperature perturbations: where θ ' is warm (cool) the air will rise (sink). The initial u, w, and p' are zero. For θ , use:

$$\theta_{i,k} = \overline{\theta} + \sum_{m=1}^{2} \left[\Delta \theta'_m \frac{\cos(r_m \pi) + 1}{2} \text{ if } r_m \le 1, \text{ else } 0 \right], \quad r_m = \sqrt{\left(\frac{x_i - x_0(m)}{xradius}\right)^2 + \left(\frac{z_k - z_0(m)}{zradius}\right)^2}$$

so $\theta(i,k)$ at time t=0 equals the base state (constant) $\overline{\theta}$ plus any perturbation $\Delta \theta'(m)$, for up to **two** initial temperature perturbations m=1,2.

Structure your IC code for setting up θ like that given below. The example code is for program 6, in 3-D; *simplify appropriately* for program 5:

Fortran	C requires <math.h></math.h>
do k = 1,nz	for (i=I1; i<=I2; i++) {
do j = 1,ny	for (j=J1; j<=J2; j++) {
do $i = 1, nx$	for (k=K1; k<=K2; k++) {
x = dx/2+dx*real(i-1)	$x = dx/2.0 + dx^{*}(float)(i-I1);$
y = dy/2 + dy + real(j-1)	$y = dx/2.0 + dx^{*}(float)(j-J1);$
z = dz/2+dz*real(k-1)	$z = dx/2.0 + dx^{*}(float)(k-K1);$
do m = 1,2	for (m=0; m<2; m++) {
xd = (x-x0(m))	rm = sqrt(
yd = (y-y0 (m))	<pre>pow((x-x0[m])/xradius[m],2.0)</pre>
zd = (z-z0(m))	+pow((y-y0[m])/yradius[m],2.0)
rad = sqrt(+pow((z-z0[m])/zradius[m],2.0));
(xd/xrad(m))**2 &	if (rm <= 1.0) {
+(yd/yrad(m))**2 &	/* your $ heta$ code here */
+(zd/zrad(m))**2)	} /* rm */
if (rad.lt.1.0) then	} /* m */
!your θ code here	} /* k */
endif	} /* j */
enddo (+3 more enddo's)	} /* i */

distance / radius calculations for initial condition of programs 5, 6

These *two* thermal perturbations $\Delta \theta'$ have different center (x,z) coordinates. The xand z-"radius" *may vary* between perturbations, so you must store two sets of "radii".

<u>*Program 6, only:*</u> In P6, perturbations have 3-D center positions (x,y,z). You will also create perturbations to the v flow component, *using the same code* as for θ :

$$\theta_{i,j,k} = \overline{\theta} + \sum_{m=1}^{2} \left[\Delta \theta'_{m} \frac{\cos(r_{m}\pi) + 1}{2} \text{ if } r_{m} \le 1, \text{ else } 0 \right]$$

$$v_{i,j,k} = \sum_{m=1}^{2} \left[\Delta v_{m} \frac{\cos(r_{m}\pi) + 1}{2} \text{ if } r_{m} \le 1, \text{ else } 0 \right]$$

$$r_{m} = \sqrt{\left(\frac{x_{i} - x_{0}(m)}{xradius_{m}} \right)^{2} + \left(\frac{y_{j} - y_{0}(m)}{yradius_{m}} \right)^{2} + \left(\frac{y_{j} - y_{0}(m)}{xradius_{m}} \right)^{2} \right)^{2}$$

Calculate r_m for each point (i,j,k), and use it in the computation of *both* perturbation θ *and* v-wind (*ignore* staggered grid positions in doing so; use the *same* r_m value, code).

In program 6, we also utilize random initial **u** values, up to +/-(upertur/2). Use the default Intel Fortran/C random number generator. Here is sample code:

Fortran	C requires <math.h></math.h>
real upertur, rand	float upertur;
call srand(0.0)	<pre>srand(0.0); /* seed */</pre>
do k = 1,nz	for (i=I1+1; i<=I2; i++) {
do j = 1, ny	for (j=J1; j<=J2; j++) {
do $i = 1, nx+1$	for (k=K1; k<=K2; k++) {
u1(i,j,k) = &	u1[i][j][k] = upertur * (
(rand(0)-0.5)*upertur	(float)rand()/(RAND_MAX + 1.0)
enddo) - upertur*0.5;
enddo	}
enddo	} }

E. Code layout

The code layout guidelines include those from past programs *plus the following:*

- Do not put your integration (advection, diffusion, pressure gradient, buoyancy, initialization...) steps in your main program; put each in a separate subroutine.
 You must also use (to build your program) and submit (for grading) a *makefile*.
- Read in from the keyboard or a file, or use via a Fortran namelist:
 times to plot (or, a plotting interval) temperature perturbations and their center locations (x,z or x,y,z) diffusion coefficients K_m and K_{theta}.
- Use ghost zones as before, as needed for the numerical schemes being applied.
- Set up the initial conditions (1-D for density, and 2-D or 3-D fields) entirely in one subroutine. Plot the initial potential temperature perturbation $(\theta \overline{\theta})$.
- You must put common processes *for different variables* in the same subroutines: advection (u,w,θ) (with 1-D advection still handled by a separate 1D routine); diffusion (u,w,θ), and pressure gradient force/buoyancy (u,w,p').
- Your main program must **ONLY** read input data, print out information as desired and call subroutines. All other code must be in subroutines for full credit.
- Remember w=0 at the top and bottom levels (k=1 and k=nz+1 in Fortran). So you do z mixing for w only from k=2:nz (in Fortran).
- Don't evolve u outside of the symmetry boundaries; compute u(2...nx) and then determine u(1) and u(nx+1) using the (a)symmetric boundary conditions.
- For pressure, first compute new values for u and w at time level (n+1). Then update the pressure from (n-1) to (n+1) using u⁽ⁿ⁺¹⁾ and w⁽ⁿ⁺¹⁾ to get p⁽ⁿ⁺¹⁾.
- The order of computation is: advection (u,w,θ) ; diffusion, and pressure terms.
- Use a forward time step to start the integration (there is a short cut we'll discuss).
- Program 6 only: For full credit, you must make a reasonable attempt at parallelizing your code, and part of your grade also requires visualization.

F. Plotting

Program 5: plot contours as usual. We will not use surface plotting.

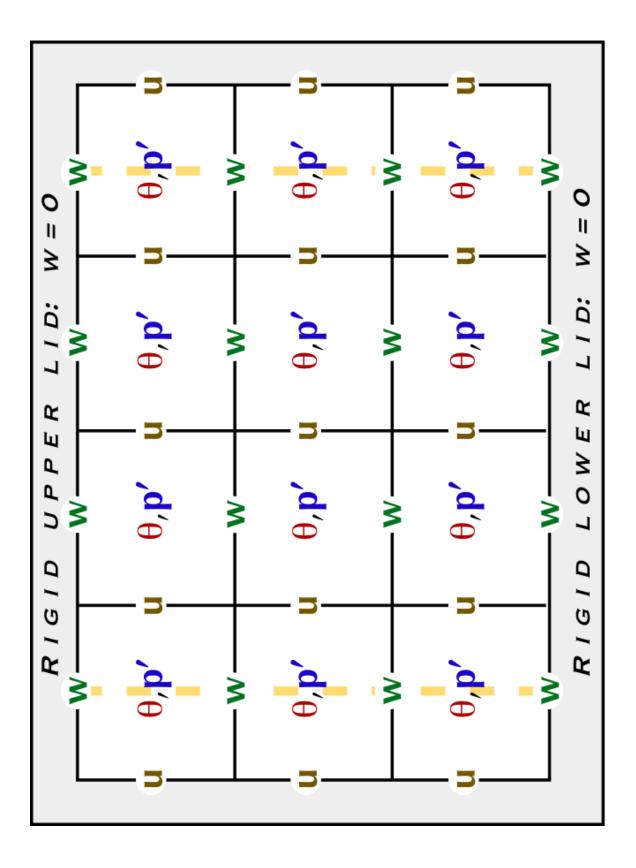
<u>Program 6</u>: You *will not* be calling plot routines directly from your program #6. Doing so is slow and wasteful considering how long your programs will (at full resolution) take to rerun. Instead, you will call C or Fortran routine *putfield* (provided to you) to write your output to disk in a unformatted binary file. Use program *plot3d* to read this file and to make any number of plots (X-Y, Y-Z, X-Z slices, or 3-D). See the class web page for details. These routines, program *plot3d* and demonstration programs will be available on stampede at ~*tg457444/502/Pgm6*. Required plots will be listed on the class web site.

G. Hints

- Do initial testing at *reduced resolution*, e.g. $\Delta x = \Delta z = 200$ m, $\Delta t = 0.5$ s.
- In testing (for Fortran), do early tests compiling with subscript checking: -g -check all -traceback.
- Beware! $NX \neq NZ$ here. Think where you have used NX=NZ in programs 2-4.
- For min/max stats and plotting, average u and w to θ/p locations; and plot $(\theta \overline{\theta})$
- We are using forward time differencing for θ advection, and centered time for everything else. So, $\delta_{2t}u$ means $u^3 = u^1 + 2\Delta t^*(...)$; θ advection is forward in time, so only two arrays are needed [handled as in programs 2-4].

H. Checking your code

There are various checks you could carry out to test parts of your code. Some tests you could perform include:


- 1. Linear advection: observe movement of θ ' field with constant *u* and/or *w* fields while disabling diffusion, buoyancy and pressure gradient terms.
- 2. 1-D: reduce two-dimensional initial condition to 1-D (e.g. let θ , u, or w vary as sin(x)) for advection tests.
- 3. Diffusion only: disable advection, buoyancy and pressure gradient terms, and damp only θ or some pre-determined function of *u* or *w*.
- 4. Pressure gradient and buoyancy terms, only: disable advection and diffusion, and integrate using the pressure gradient terms (influences u, w), buoyancy term (influences w), and the pressure field update itself (from gradients in u, w). In this test, the θ field stays constant with time, and a circulation develops in the u and wfields. This is a particularly useful test. The sequence of evolution to look for is:
 - a. The temperature perturbation θ ' leads to vertical acceleration, changing w
 - b. The new, nonzero *w* field creates pressure gradients (from $\partial w/\partial z$)
 - c. The pressure gradients lead to horizontal acceleration, changing *u*
- 5. Look for symmetry in your solutions. For example, an initial temperature perturbation placed at the very center of the domain will lead to minima and maxima of opposite sign in *u*; this should remain true as your solution evolves.
 - a. But: the symmetry is in x; comparable symmetry will not occur in z due to the density variation with height.

I. Visualization (program 6 only)

Use program *plot3d*, provided to you, to produce the necessary contour plots. Beyond this, part of the program grade (see below) involves creating a few 3-D plots with the visualization tools *vis5d* or *VisIt*. *plot3d* can convert your simulation output to the necessary format. See the class web site for details.

Following is a broad description of how my program is coded.

1.	MAIN	PROGRAM	NOTES
1.	a.	read in parameters; call <i>IC</i>	<u>NOILS</u>
	a. b.	plot initial condition	Always plot $\boldsymbol{\theta}$, not total $\boldsymbol{\theta}$
	0. C.	call <i>MAXMIN</i>	Find min, max of all fields
1	d.	call BC	Set ghost points for first time step
	е.	set tstep = Δt	Because your first step is a forward one
	с. f.	TIME LOOP: $n=1,max$ steps	because your first step is a <u>forward</u> one
		• set u3=u1, w3=w1, t2=t1	Array copy helps start this time step.
		• call <i>ADVECT</i>	Advection of $\boldsymbol{\theta}$, u, and w.
		 call <i>DIFFUSION</i> 	Mix: u, w, and $\boldsymbol{\theta}$ (note: in general $K_m \neq K_{theta}$)
		• call <i>PGF</i>	Obtain u3,w3; get new $p3$
		 array update 	This is the usual array switch between old, new
		e unuy update	time levels. There are three time levels for
			u,w,p, and <u>two</u> for θ .
			But : if first step, <u>don't</u> update u1, w1, or p1.
			and a point of the start of the second secon
		• if (n=1) set tstep = $2\Delta t$	Switch from forward to centered time for u,w,p.
			,, r .
		• call BC	Get BCs ready for next time step.
		• call <i>MAXMIN</i>	also store max/min info for later use.
		• if desired time: PLOT	Call contour routine for u, w, θ , and p
	g.	END OF TIME LOOP	
	h.	plot time traces	using min/max u/w/ θ I have already stored
2.	IC RO	UTINE	Compute constants and 1D arrays here.
	a.	compute 1D arrays	includes density(z) at θ and w levels
1	b.	set $\mathbf{p}', \mathbf{u}, \mathbf{w} = 0$	Do this for (n) and $(n-1)$ variables; this is part
1		(in program 6, we set v using	of preparing for the first, forward time step
1		perturbations, and set <i>u</i> to	(hence tstep is first set to Δt , and later to $2\Delta t$)
1		random numbers; u is nonzero in P6!)	Remember you read in the temperature
1			perturbations and their locations
	C.	set θ based on handout.	
3.		<u>DUTINE</u>	
	a.	0-gradient top, bottom	So $u(i,nz+1) = u(i,nz)$
	b.	w, $\boldsymbol{\theta}$, and p' are same on either side of	So $p(0,k) = p(2,k)$, $p(n_{k+1} k) = p(n_{k-1} k)$
	-	symmetry boundary	p(nx+1,k)=p(nx-1,k) So $u(1,k) = u(2,k), u(0,k) = u(3,k)$
4		Anti-symmetry for u	So $u(1,k) = -u(2,k)$, $u(0,k) = -u(3,k)$
4.		$\frac{\text{CT ROUTINE}}{\text{W} + \text{W}^2 - \text{W}^2 + \text{tsten}^*(\text{how terms})}$	Pacell u. w. n. have centered time derivatives
	a.	u: u3 = u3 + tstep*(box terms)	Recall u,w,p have centered time derivatives. For program 6, do v advection here, too.
	b.	w: $w3 = w3 + tstep^*$ (box terms)	ror program 0, uo v auvection here, too.
1	0. C.	θ advection as usual (old "integrate" code)	Piecewise linear advection.
5.		SION ROUTINE	
5.	<u>DII I C</u> a.	$u^3 = u^3 + tstep^*(x, z mixing terms)$	For program 6, do v diffusion, too.
1	b.	$w3 = w3 + tstep^*(x, z mixing terms)$	W is always zero at $k=1$ and at $k=nz+1$
1	с.	Mix θ	
6.		UBROUTINE	Pressure gradient / buoyancy routine.
	<u>1015</u> a.	u3 = u3 - tstep*(pgf terms)	Adding to the u3 array.
1	b.	w3 = w3 - tstep*(pgf terms)	Adding to the w3 array.
1	0.	+ tstep*(buoyancy terms)	Remember w=0 at k=1 and k=nz+1
1			
1	C.	set u, w BCs (could call <i>BC</i> , or set here)	Get ready for derivatives in p equation
1	d.	p3 = p1 - (pgf terms)	pgf terms use new u, w at time (n+1)

