
Computer problems 5 and 6  page 1 Spring 2019 - Jewett 

Apr. 2, 2019 ATMS 502 - CSE 566 Jewett 

Computer Problems 5 and 6 
2-D and 3-D nonlinear quasi-compressible flow 

 
Description:  Program 5 (“P5”) is 2-D.  Program 6 (“P6”) is fully 3-D. 
Due: Program 5 is due Tuesday April 16.  Pgm 6 is due during finals week. 
Equations for program 6 (3-D) follow.  For program 5, ignore/omit all v terms and y-derivatives. 
A.  Equations 

Program 6 has 5 unknowns: horizontal flow components (u and v, m s-1), vertical flow 
(w, m s-1), potential temperature (q, deg. K), and perturbation pressure (p’, Pa).  The 
base-state time-invariant density ( , g kg-1) and temperature ( ) are functions of height 
only. The quasi-compressible set has “pseudo” sound waves traveling at speed cs; the 
pressure approaches an anelastic solution (Droegemeier and Wilhelmson 1987, J. Atmos. 
Sci., p. 1187).  The continuous form with advection, diffusion, pressure, & buoyancy: 

u-momentum:  

v-momentum: 
  (program 6 only) 

 

w-momentum: 
          

Perturbation 
     pressure:  

q (pot. temperature): 
 

The discrete equations use forward time differencing for q, and centered for u, v, w, p: 

u:  

v: 
(P6) 

 

w:  

: 
        

(cs is the fixed sound speed) 

 
q: 

P5: PL advection, plus 2-D diffusion.  P6: Strang splitting + 3-D diffusion: 
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u, v, w advection follow the (unsplit) “box method,” not to be confused with the implicit 
scheme of the same name.  Pressure and diffusion terms are lagged (at time n-1).  q is 
advected with Lax-Wendroff or piecewise linear methods.  Note: time levels, averaging! 

B.  Grid layout and boundary conditions 

(2-D) x-z domain layout, variable placement, and boundary conditions 

 

P5 variables (not incl. ghost zones) 
• u(nx+1, nz) 
• w(nx, nz+1) 
• q(nx, nz) 
• p’(nx, nz) 

Dashed yellow lines  
X symmetry boundaries -- 

• q, w, p’ are same on 
opposite sides of the 
symmetry boundaries 

• u is of opposite sign across 
these boundaries. 

• Dimensions: 
o Use ∆x=∆z; grid spacing, dimensions to be announced.  

§ We will do test cases at coarse resolution, e.g. 200m or larger.  
o physical dimensions are no longer from (-.5,-.5) to (+.5,+.5) 
o x coordinates (for q, p’) = ∆x/2+∆x(i-1), i=1…nx (Fortran) 
o bottom-left corner q, p’ are at (x=∆x/2, z=∆z/2) 
o w (at k=1 in Fortran, k=K1 in C) is at z=0 
o u  (at i=1  in Fortran,   i=I1 in C) is at x=0 

• Top, bottom boundaries: 
o free slip (no drag on u); rigid lids (w=0 at k=1 and k=nz+1 in Fortran) 
o 0-gradient for all variables; any variable x(k=0) = x(k=1, Fortran), etc. 

• Lateral (x) boundaries: symmetry boundaries shown with dashed yellow lines 
o u(1) = -u(2) u(nx+1) = -u(nx)   (Fortran indices here) 
o q(0) =  q(2) q(nx+1) =  q(nx-1)  (same for w,p’) 

• Lateral (y) boundaries: (program 6, only) 
o Y boundaries are periodic.  Consider the periodic boundary to sit at the 

V wind locations for j=1 and j=ny+1.   
o You will only integrate V from 1:ny (Fortran indices); the value of V 

at (ny+1) will always be set equal to V at j=1.  
o Other variables are periodic in Y as x(ny+1) = x(1), etc. 
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C.  Initial conditions (base state) 
§ First you must define the base state vertical profiles for density  and base-

state potential temperature .  You only save  for later use; other variables  
(z, P, T) are used only to calculate .  There is no need to save T(z) and P(z). 

§ The first vertical velocity level, w at Fortran k=1, is at z=0 consistent with our 
C-grid staggering.  

§ In the expressions below, z refers to the height at a q and p’ level. The notation 
given is for Fortran.  

 

Check your initial state with this data for ∆z=100m, at (Fortran) k=11, z=1050m:   
§ P=88540 Pa 
§ T=289.74 K 
§ ru level = 1.065 g kg-1, rw level = 1.069 g kg-1.   
§ Note you compute ru level as above, and average in height to get rw level; this 

is why rw level is written as on page 1.  
§ rw level at k=1 can have any value; it is only used where multiplied by w, and 

wground = 0. 

D.  Initial conditions (perturbation potential temperature and u, w) 

Program 5:  The solution evolves from an initial state with zero mean flow U(z) and 
constant potential temperature (q).  We begin with temperature perturbations:  where 
q’ is warm (cool) the air will rise (sink).  The initial u, w, and p’ are zero.  For q, use: 

 

so q(i,k) at time t=0 equals the base state (constant)  plus any perturbation ∆ (m), 
for up to two initial temperature perturbations m=1,2.   

Structure your IC code for setting up q like that given below.  The example code is 
for program 6, in 3-D; simplify appropriately for program 5: 

€ 

ρ 
θ

€ 

ρ 

€ 

ρ 

z(k) = Δz
2
+Δz k −1( )

T (z) = 300.0− g
cp
z

P(z) = P0
T
θ

#

$
%

&

'
(

cp /Rd

ρ(z) = P
RdT

)

*

+
+
+
+
+

,

+
+
+
+
+

 where 

z = height (m) of θ,u, -p  levels
θ (z) = 300K = (constant) potential temperature
g = 9.81 ms−2 = gravity
cp =1004 J kg-1K-1 = specific heat at constant pressure

Rd = 287 J kg-1K-1 = dry air gas constant
P0 =105  Pa = standard pressure at sea level
ρ = density (kg m−3) at θ,u, -p  levels

.

/

+
+
+
++

0

+
+
+
+
+

€ 

ρ ( )
z

θi,k =θ + Δ "θm
cos rmπ( )+1

2
 if rm ≤1,  else 0

$

%
&

'

(
)

m=1

2

∑ ,   rm =
xi − x0 (m)
xradius

,

-
.

/

0
1

2

+
zk − z0 (m)
zradius

,

-
.

/

0
1

2

€ 

θ 

€ 

" θ 



Computer problems 5 and 6  page 4 Spring 2019 - Jewett 

distance / radius calculations for initial condition of programs 5, 6 

Fortran C  requires <math.h> 

do k = 1,nz 
 do j = 1,ny  
  do i = 1,nx 
    x = dx/2+dx*real(i-1) 
    y = dy/2+dy*real(j-1) 
    z = dz/2+dz*real(k-1) 
    do m = 1,2 
      xd = (x-x0(m)) 
      yd = (y-y0(m)) 
      zd = (z-z0(m)) 
      rad = sqrt(  
         (xd/xrad(m))**2 & 
        +(yd/yrad(m))**2 & 
        +(zd/zrad(m))**2 ) 
      if (rad.lt.1.0) then 

!        …your q code here… 
      endif 
    enddo  (+3 more enddo’s) 

for (i=I1; i<=I2; i++) { 
 for (j=J1; j<=J2; j++) { 
  for (k=K1; k<=K2; k++) { 
    x = dx/2.0 + dx*(float)(i-I1); 
    y = dx/2.0 + dx*(float)(j-J1); 
    z = dx/2.0 + dx*(float)(k-K1);  
    for (m=0; m<2; m++) {         
     rm = sqrt(  
      pow((x-x0[m])/xradius[m],2.0)  
     +pow((y-y0[m])/yradius[m],2.0)  
     +pow((z-z0[m])/zradius[m],2.0)); 
     if (rm <= 1.0) { 

          /* your q code here */ 
     } /* rm */ 
    } /* m */ 
   } /* k */ 
  } /* j */ 
 } /* i */ 

These two thermal perturbations ∆q’ have different center (x,z) coordinates. The x- 
and z-“radius” may vary between perturbations, so you must store two sets of “radii” . 

Program 6, only:  In P6, perturbations have 3-D center positions (x,y,z).  You will 
also create perturbations to the v flow component, using the same code as for q: 

 

 

Calculate rm for each point (i,j,k), and use it in the computation of both perturbation q 
and v-wind (ignore staggered grid positions in doing so; use the same rm value, code). 

In program 6, we also utilize random initial u values, up to +/-(upertur/2).  Use the 
default Intel Fortran/C random number generator.  Here is sample code: 

Fortran C  requires <math.h> 
 real upertur,rand 
 call srand(0.0) 

 do k = 1,nz 
   do j = 1,ny  
     do i = 1,nx+1 
       u1(i,j,k) = & 
         (rand(0)-0.5)*upertur 
     enddo    
   enddo      
 enddo 

float upertur; 
srand(0.0);  /* seed */         

for (i=I1+1; i<=I2; i++) { 
 for (j=J1;  j<=J2; j++) { 
  for (k=K1; k<=K2; k++) { 
    u1[i][j][k] = upertur * (         
    (float)rand()/(RAND_MAX + 1.0)  
      ) – upertur*0.5; 
   } 
} } 
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E.  Code layout 
The code layout guidelines include those from past programs plus the following: 

§ Do not put your integration (advection, diffusion, pressure gradient, buoyancy, 
initialization…) steps in your main program; put each in a separate subroutine.  
You must also use (to build your program) and submit (for grading) a makefile. 

§ Read in from the keyboard or a file, or use via a Fortran namelist:  
   • times to plot (or, a plotting interval) • temperature perturbations and their 
     center locations (x,z or x,y,z) • diffusion coefficients Km and Ktheta. 

§ Use ghost zones as before, as needed for the numerical schemes being applied. 
§ Set up the initial conditions (1-D for density, and 2-D or 3-D fields) entirely in 

one subroutine.  Plot the initial potential temperature perturbation . 

§ You must put common processes for different variables in the same subroutines: 
advection (u,w,q) (with 1-D advection still handled by a separate 1D routine); 
diffusion (u,w,q), and pressure gradient force/buoyancy (u,w,p’). 

§ Your main program must ONLY read input data, print out information as desired 
and call subroutines.  All other code must be in subroutines for full credit. 

§ Remember w=0 at the top and bottom levels (k=1 and k=nz+1 in Fortran).  So you 
do z mixing for w only from k=2:nz (in Fortran).  

§ Don’t evolve u outside of the symmetry boundaries; compute u(2…nx) and then 
determine u(1) and u(nx+1) using the (a)symmetric boundary conditions. 

§ For pressure, first compute new values for u and w at time level (n+1).  Then 
update the pressure from (n-1) to (n+1) using u(n+1) and w(n+1) to get p(n+1). 

§ The order of computation is: advection (u,w,q); diffusion, and pressure terms. 

§ Use a forward time step to start the integration (there is a short cut we'll discuss). 
§ Program 6 only: For full credit, you must make a reasonable attempt at 

parallelizing your code, and part of your grade also requires visualization. 

F.  Plotting 
Program 5: plot contours as usual. We will not use surface plotting. 
Program 6: You will not be calling plot routines directly from your program #6.  Doing 
so is slow and wasteful considering how long your programs will (at full resolution) take 
to rerun. Instead, you will call C or Fortran routine putfield (provided to you) to write 
your output to disk in a unformatted binary file.  Use program plot3d to read this file and 
to make any number of plots (X-Y, Y-Z, X-Z slices, or 3-D).  See the class web page for 
details. These routines, program plot3d and demonstration programs will be available on 
stampede at ~tg457444/502/Pgm6.  Required plots will be listed on the class web site. 
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G. Hints 

• Do initial testing at reduced resolution, e.g. ∆x=∆z=200m, ∆t=0.5s. 
• In testing (for Fortran), do early tests compiling with subscript checking:  

     -g –check all –traceback. 
• Beware!  NX≠NZ here.  Think where you have used NX=NZ in programs 2-4. 
• For min/max stats and plotting, average u and w to q/p locations; and plot  

• We are using forward time differencing for q advection, and centered time for 
everything else.  So, d2tu means u3 = u1 + 2∆t*(…); q advection is forward in time, 
so only two arrays are needed [handled as in programs 2-4]. 

 
H. Checking your code 

There are various checks you could carry out to test parts of your code. Some tests you 
could perform include: 

1. Linear advection: observe movement of q’ field with constant u and/or w fields 
while disabling diffusion, buoyancy and pressure gradient terms. 

2. 1-D:  reduce two-dimensional initial condition to 1-D (e.g. let q, u, or w vary as 
sin(x)) for advection tests. 

3. Diffusion only: disable advection, buoyancy and pressure gradient terms, and 
damp only q or some pre-determined function of u or w. 

4. Pressure gradient and buoyancy terms, only:  disable advection and diffusion,  
and integrate using the pressure gradient terms (influences u, w), buoyancy term 
(influences w), and the pressure field update itself (from gradients in u, w).  In this 
test, the q field stays constant with time, and a circulation develops in the u and w 
fields.  This is a particularly useful test.  The sequence of evolution to look for is: 

a. The temperature perturbation q’ leads to vertical acceleration, changing w 
b. The new, nonzero w field creates pressure gradients (from ∂w/∂z) 
c. The pressure gradients lead to horizontal acceleration, changing u 

5. Look for symmetry in your solutions.  For example, an initial temperature 
perturbation placed at the very center of the domain will lead to minima and 
maxima of opposite sign in u; this should remain true as your solution evolves. 

a. But: the symmetry is in x; comparable symmetry will not occur in z due to 
the density variation with height. 

I.  Visualization (program 6 only) 

Use program plot3d, provided to you, to produce the necessary contour plots.  Beyond 
this, part of the program grade (see below) involves creating a few 3-D plots with the 
visualization tools vis5d or VisIt.  plot3d can convert your simulation output to the 
necessary format.  See the class web site for details. 

€ 

θ −θ ( )



Computer problems 5 and 6  page 7 Spring 2019 - Jewett 

Following is a broad description of how my program is coded. 
 
1. MAIN PROGRAM 

a. read in parameters; call IC 
b. plot initial condition 
c. call MAXMIN 
d. call BC 
e. set tstep = ∆t 
f. TIME LOOP:  n=1,max_steps 

• set u3=u1, w3=w1, t2=t1 
• call ADVECT 
• call DIFFUSION 
• call PGF 
• array update 

 
 
 

 
• if (n=1) set tstep = 2∆t 

 
• call BC 
• call MAXMIN 
• if desired time:  PLOT 

g. END OF TIME LOOP 
h. plot time traces  

NOTES 
 
Always plot q’, not total q 
Find min, max of all fields 
Set ghost points for first time step 
Because your first step is a forward one 
 
Array copy helps start this time step. 
Advection of  q, u, and w. 
Mix: u, w, and q (note: in general Km ≠ Ktheta) 
Obtain u3,w3; get new p3 
This is the usual array switch between old, new 
time levels.  There are three time levels for 
u,w,p, and two for q.   
But: if first step, don’t update u1, w1, or p1.   
 

Switch from forward to centered time for u,w,p. 
 
Get BCs ready for next time step. 
… also store max/min info for later use. 
Call contour routine for u, w, q’, and p 
 
.. using min/max u/w/q I have already stored 

2. IC ROUTINE 
a. compute 1D arrays 
b. set p’,u,w = 0 

(in program 6, we set v using 
  perturbations, and set u to 
  random numbers; u is nonzero in P6!) 
 

c. set q¢ based on handout. 

Compute constants and 1D arrays here. 
includes density(z) at q and w levels 
Do this for (n) and (n-1) variables; this is part 
of preparing for the first, forward time step 
(hence tstep is first set to ∆t, and later to 2∆t) 
Remember you read in the temperature 
perturbations and their locations 

3. BC ROUTINE 
a. 0-gradient top, bottom 
b. w, q, and p’ are same on either side of 

symmetry boundary 
c. Anti-symmetry for u 

 
So u(i,nz+1) = u(i,nz) 
So p(0,k) = p(2,k), 
     p(nx+1,k)=p(nx-1,k) 
So u(1,k) = -u(2,k), u(0,k) = -u(3,k) 

4. ADVECT ROUTINE 
a. u:  u3 = u3 + tstep*(box terms) 

 
b. w:  w3 = w3 + tstep* (box terms) 
c. q advection as usual (old “integrate” code) 

 
Recall u,w,p have centered time derivatives.  
For program 6, do v advection here, too. 
 
Piecewise linear advection. 

5. DIFFUSION ROUTINE 
a. u3  = u3  + tstep*(x, z mixing terms) 
b. w3 = w3 + tstep*(x, z mixing terms) 
c. Mix q … 

 
For program 6, do v diffusion, too. 
W is always zero at k=1 and at k=nz+1 

6. PGF SUBROUTINE 
a. u3 = u3 -   tstep*(pgf terms) 
b. w3 = w3 - tstep*(pgf terms) 

             + tstep*(buoyancy terms) 

c. set u, w BCs (could call BC, or set here) 
d. p3 = p1 - (pgf terms) 

Pressure gradient / buoyancy routine. 
Adding to the u3 array. 
Adding to the w3 array. 
Remember w=0 at k=1 and k=nz+1 

Get ready for derivatives in p equation 
pgf terms use new u, w at time (n+1) 
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