
ATMS 502 / CSE 566 corrected-1 Spring 2019 

Feb. 21, 2019 ATMS 502 - CSE 566 Jewett 

Computer Problem 3 
2D Advection, Deformational Flow 

Due: 2:00 PM Friday March 1 
Turn in: your code and plotted results (all submitted via Moodle) 

Problem being solved: 2-D linear advection with fractional step (directional) splitting. 
Boundary condition:  0-gradient (as in program #2) 
Numerical methods: Lax-Wendroff, 6th-order Crowley, and Takacs. 

1. Crowley 2nd-order 
    (same as Lax-Wendroff)  

2. Crowley 6th-order See Tremback p. 542, ORD=6 (advective form) 

3. Takacs (1985) 
 

(as in program 2) 

 

Domain: The domain size/layout are the same as program #2.  However, u, v differ from 
the last problem, as does the initial position/size of the cone.  Be careful: u(i,j) (½ grid 
length to the left of s) and v(i,j) (½ grid length below s) are now functions of x and y. 

If you see asymmetry (discussed below) in your solutions, the #1 most likely cause is a 
problem in the initial conditions – probably the X and Y coordinates used in creating the 
initial conditions.  All you need is for the cone or the U or V velocity components to be 
incorrectly located by dx/2 or dy/2 to result in erroneous behavior.  Symmetry tests are 
great at identifying problems in the initial or boundary condition or advection scheme. 

Advection method: Lax-Wendroff, 6th-order Crowley, Takacs are directionally split, and 
are unaware of C-grid staggering so you must average velocity to the scalar point in your 
1-D advection. Takacs needs 2 ghost points, and 6th-order Crowley requires 3.   

Settings:  nx, ny, cone center, cone radius, time step, # of steps – see program 3 page. 
Read In:  the numerical method to use • number of steps to run • how often to plot  

Initial conditions: Define s as before, though the cone radius and center are changed. 

Wind field – 
deformation 

𝑢(𝑥, 𝑦) = 𝑠𝑖𝑛(4𝜋𝑥) × 𝑠𝑖𝑛(4𝜋𝑦)
𝑣(𝑥, 𝑦) = 𝑐𝑜𝑠(4𝜋𝑥) × 𝑐𝑜𝑠(4𝜋𝑦)  

sj
n+1 = sj

n −
ν
2
sj+1
n − sj−1

n( )+ ν
2

2
sj+1
n − 2sj

n + sj−1
n( )

ν ≥ 0 :  
sj
n+1 = sj

n −
ν
2
sj+1
n − sj−1

n( )+ ν
2

2
sj+1
n − 2sj

n + sj−1
n( )

              − 1+ν
6

⎛

⎝
⎜

⎞

⎠
⎟ν ν −1( ) sj+1

n −3sj
n +3sj−1

n − sj−2
n( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

ν < 0 :  
sj
n+1 = sj

n −
ν
2
sj+1
n − sj−1

n( )+ ν
2

2
sj+1
n − 2sj

n + sj−1
n( )

              −
1+ ν

6
⎛

⎝
⎜

⎞

⎠
⎟ν ν +1( ) sj−1

n −3sj
n +3sj+1

n − sj+2
n( )

⎧

⎨
⎪
⎪

⎩
⎪
⎪



ATMS 502 / CSE 566 corrected-2 Spring 2019 

Code layout requirements:  
1. you must use and call separate advection (2-D) and advect1d (1-D) routines.   

• Do the 1-D advection step fully in a separate advect1d routine, where  
your 1-D methods reside.    

• Do not combine 2D, 1D steps or embed integration code in the main 
program or in your 2-D advection routine.   

2. do not “hard-code” your program for any scheme!  So your code must be set up 
for the maximum number of ghost points (3) you need, and to run any scheme. 

3. pass the staggered [not averaged] u or v data to advect1d.   

• the unstaggering of the velocities is done inside advect1d when you e.g. 
compute the Courant number (in Fortran: dt/dx*0.5*(u1d(i)+u1d(i+1)) ) 

4. do not hard-code the program’s (maximum) grid dimensions except at the start of 
the main program, in (Fortran) a module routine, or in an include file.   

5. do not (in C) use point 0 as always a single ghost point, 1 as the first physical 
point, etc; you must use the I1,I2,J1,J2 (etc.) notation for handling ghost points. 

6. code generally!  See class content page for full code rules. 

Submit online:  

• Contour plots of the initial u, v, and s field.  And, for each method, create contr 
and sfc plots of the solutions at 125, 250, 750 steps. 

• Smin(t) & Smax(t) plots are not necessary, but do use my contr and sfc routines. 
  


