Computer Problem 3

2D Advection, Deformational Flow

Due: 2:00 PM Friday March 1
Turn in: your code and plotted results (all submitted via Moodle)
Problem being solved: 2-D linear advection with fractional step (directional) splitting.
Boundary condition: 0-gradient (as in program \#2)
Numerical methods: Lax-Wendroff, $6^{\text {th }}$-order Crowley, and Takacs.

1. Crowley $2^{\text {nd }}$-order (same as Lax-Wendroff)	$s_{j}^{n+1}=s_{j}^{n}-\frac{v}{2}\left(s_{j+1}^{n}-s_{j-1}^{n}\right)+\frac{v^{2}}{2}\left(s_{j+1}^{n}-2 s_{j}^{n}+s_{j-1}^{n}\right)$
2. Crowley 6th-order	See Tremback p. 542, ORD=6 (advective form)
3. Takacs (1985) (as in program 2)	$\begin{aligned} & v \geq 0:\left\{\begin{array}{r} s_{j}^{n+1}=s_{j}^{n}-\frac{v}{2}\left(s_{j+1}^{n}-s_{j-1}^{n}\right)+\frac{v^{2}}{2}\left(s_{j+1}^{n}-2 s_{j}^{n}+s_{j-1}^{n}\right) \\ -\left(\frac{1+v}{6}\right) v(v-1)\left(s_{j+1}^{n}-3 s_{j}^{n}+3 s_{j-1}^{n}-s_{j-2}^{n}\right) \end{array}\right. \\ & v<0:\left\{\begin{array}{r} s_{j}^{n+1}=s_{j}^{n}-\frac{v}{2}\left(s_{j+1}^{n}-s_{j-1}^{n}\right)+\frac{v^{2}}{2}\left(s_{j+1}^{n}-2 s_{j}^{n}+s_{j-1}^{n}\right) \\ -\left(\frac{1+\|v\|}{6}\right) v(v+1)\left(s_{j-1}^{n}-3 s_{j}^{n}+3 s_{j+1}^{n}-s_{j+2}^{n}\right) \end{array}\right. \end{aligned}$

Domain: The domain size/layout are the same as program \#2. However, $\boldsymbol{u}, \boldsymbol{v}$ differ from the last problem, as does the initial position/size of the cone. Be careful: $\boldsymbol{u}(i, j)(1 / 2$ grid length to the left of s) and $v(i, j)(1 / 2$ grid length below $s)$ are now functions of x and y .

If you see asymmetry (discussed below) in your solutions, the \#1 most likely cause is a problem in the initial conditions - probably the X and Y coordinates used in creating the initial conditions. All you need is for the cone or the U or V velocity components to be incorrectly located by $\mathrm{dx} / 2$ or $\mathrm{dy} / 2$ to result in erroneous behavior. Symmetry tests are great at identifying problems in the initial or boundary condition or advection scheme.

Advection method: Lax-Wendroff, $6^{\text {th }}$-order Crowley, Takacs are directionally split, and are unaware of C-grid staggering so you must average velocity to the scalar point in your 1 -D advection. Takacs needs 2 ghost points, and $6^{\text {th }}$-order Crowley requires 3 .

Settings: nx, ny, cone center, cone radius, time step, \# of steps - see program 3 page.
Read In: the numerical method to use • number of steps to run \bullet how often to plot
Initial conditions: Define s as before, though the cone radius and center are changed.

Wind field - deformation	$u(x, y)=\sin (4 \pi x) \times \sin (4 \pi y)$
$v(x, y)=\cos (4 \pi x) \times \cos (4 \pi y)$	

Code layout requirements:

1. you must use and call separate advection (2-D) and advectld (1-D) routines.

- Do the 1-D advection step fully in a separate advect1d routine, where your 1-D methods reside.
- Do not combine 2D, 1D steps or embed integration code in the main program or in your 2-D advection routine.

2. do not "hard-code" your program for any scheme! So your code must be set up for the maximum number of ghost points (3) you need, and to run any scheme.
3. pass the staggered [not averaged] u or v data to advectld.

- the unstaggering of the velocities is done inside advectld when you e.g. compute the Courant number (in Fortran: dt/dx*0.5*(u1d(i)+u1d(i+1)))

4. do not hard-code the program's (maximum) grid dimensions except at the start of the main program, in (Fortran) a module routine, or in an include file.
5. do not (in C) use point 0 as always a single ghost point, 1 as the first physical point, etc; you must use the I1,I2,J1,J2 (etc.) notation for handling ghost points.
6. code generally! See class content page for full code rules.

Submit online:

- Contour plots of the initial u, v, and s field. And, for each method, create contr and $s f c$ plots of the solutions at $125,250,750$ steps.
- $\operatorname{Smin}(\mathrm{t}) \& \operatorname{Smax}(\mathrm{t})$ plots are not necessary, but do use my contr and $s f c$ routines.

