
1

Jan. 31, 2019 ATMS 502 - CSE 566 Jewett

Computer Problem 2

2D Advection, Rotational Flow

Due: in class, Tuesday, Feb. 12.
Turn in: your code (submitted on Moodle), and statistics & plots (on paper).

Problem being solved: 2-D linear advection via fractional step (directional) splitting
Initial conditions: Circular field (decreases as 1/radius; “cone” if plotted in 3-D)
Boundary conditions: 0-gradient (extended from grid boundary) in both directions
Flow field: rotational flow (counter-clockwise), constant w/time
Evaluation: You will compute Takacs (1985) error statistics over the 2-D domain
using a known solution – the initial condition, since we will integrate over one 2-D cycle.

Methods:

1. Lax-Wendroff

2. Takacs (1985)

(Note: his formulation is for
n > 0; I have modified it so it
can also be used with negative
courant numbers.)

3. Crowley 6th-order
 extra credit: 10% See Tremback p. 542, ORD=6 (advective form)

Utilize two ghost points to accommodate Takacs’ method; three if also doing Crowley.

Domain: The computational domain is a two-dimensional staggered C-grid, with the
scalar field (hereafter called s) in a 121x121 domain, with ∆x=∆y=1.0/real(nx-1). The
physical coordinates for s range from -0.5 to +0.5 in each direction. The u and v wind
field components vary in space but are time-invariant and thus have no ghost points. In
C-grid staggering, the physical location for u(i,j) is ½∆x to the left of s(i,j); v(i,j) is
located ½∆y below s. Due to staggering, u is dimensioned (nx+1,ny), and v is
dimensioned (nx,ny+1) … again, without ghost points for the u, v velocity variables.

If you see asymmetry (discussed below) in your solutions, the #1 most likely cause is a
problem in the initial conditions – probably the X and Y coordinates used in creating the
initial conditions. On the positive side, tests with this sort of symmetry property are great
at helping locate any problems in the initial condition, boundary condition or advection
schemes, which is why we use them.

sj
n+1 = sj

n −
ν
2
sj+1
n − sj−1

n()+ ν
2

2
sj+1
n − 2sj

n + sj−1
n()

ν ≥ 0 :
sj
n+1 = sj

n −
ν
2
sj+1
n − sj−1

n()+ ν
2

2
sj+1
n − 2sj

n + sj−1
n()

 − 1+ν
6

⎛

⎝
⎜

⎞

⎠
⎟ν ν −1() sj+1

n −3sj
n +3sj−1

n − sj−2
n()

⎧

⎨
⎪⎪

⎩
⎪
⎪

ν < 0 :
sj
n+1 = sj

n −
ν
2
sj+1
n − sj−1

n()+ ν
2

2
sj+1
n − 2sj

n + sj−1
n()

 −
1+ ν

6
⎛

⎝
⎜

⎞

⎠
⎟ν ν +1() sj−1

n −3sj
n +3sj+1

n − sj+2
n()

⎧

⎨
⎪
⎪

⎩
⎪
⎪

2

Boundary conditions: simple “extension” of boundary values. If you need s(j-1) or
s(j+1) near a boundary, use the boundary value (for x and y). This is “zero-gradient.”
Initial conditions:

Scalar “s”
(the “cone”

shape)

Flow field u(x,y) = -2y; v(x,y) = 2x (rotational flow)

Settings
• Initial condition, time step: cone radius r = 0.120, center x0,y0=(0.0, 0.30); take

600 steps (one cycle); ∆t=(p/600). Your true final solution = the initial condition.
• Error analysis: put these computations in a (sub)routine, not the main program.

Compute error stats for the final solution following Takacs (1985); print total,
dissipation and dispersion error to 5 decimal places. Compute total error with
Takacs' eqn. 6.1. The dissipation and dispersion errors are eqns. 6.6 and 6.7. In
expressions (6.5-6.7), there is a linear correlation coefficient r; compute as:

sd and sT here refer to the finite
difference and true solutions

for the scalar field “s”

• Read in: scheme choice (Lax-Wendroff or Takacs) and the plotting interval.

Advection schemes: you are using Lax-Wendroff, Takacs and (perhaps) 6th-order
Crowley methods, which are all 2-time-level and 1-D. Both use directional splitting, X
followed by Y-advection. Note that Takacs needs 2 ghost points, and Crowley needs 3.
Apply them in 2-D by first doing advection in x (for all rows), and then y-advection for
all columns (the y-advection uses the results of the x-advection). We will stick with the
sequence x-advection, y-advection, x-, y- … for all computations.

Use this plan for changing program 1 => program #2:
• You need 2 two-dimensional scalar arrays of size (nx,ny) and named s1 and s2 for

the scalar being advected. Include 2 ghost points on each side of your 2d scalar
arrays. For velocity components, create arrays u(nx+1,ny) and v(nx,ny+1).
Velocity variables do not evolve; no ghost points needed for velocity components.

• Confirm that your initial conditions are OK first before proceeding further!

Coding requirements for this problem:
• Do not simply add Takacs code to your advection routine! Instead …
• Copy your 1D advection code file to a new “advect1d” file; add 1D Takacs code

inside the advect1d routine. “advection” calls advect1d to do the work!
• Do not (in C) assume point 0 as single ghost point, etc … use I1, I2 notation!!
• Pass staggered u & v data to advect1d. Averaging of u, v is done inside advect1d.
• Change main advection routine to handle x- vs. y-advection passes, each calling

your “advect1d” routine each time step. It must pass the scheme type to advect1d.

Hand in:

si, j =
0, if d > r

5[1+ cos(πd / r)], otherwise
where

⎧
⎨
⎪

⎩⎪
 d= (xi, j − x0)2 + (yi, j − y0)2

ρ =
sd − sd() sT − sT()∑

sd − sd()2 sT − sT()2∑∑

3

• Plots: contour and 3D surface plots of the initial condition and, for each method,
solution at 600 steps. Also, for each method, plots of smin(t) and smax(t).

• Print and hand in Takacs error data to 5 decimal places for your final solutions.
• Also upload your code to Moodle as in program 1.

